ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoporous Carbon Nitride: A High Efficient Filter for Seawater Desalination

354   0   0.0 ( 0 )
 نشر من قبل Weifeng Li
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low efficiency of commercially-used reverse osmosis (RO) membranes has been the main obstacle in seawater desalination application. Here, we report the auspicious performance, through molecular dynamics simulations, of a seawater desalination filter based on the recently-synthesized graphene-like carbon nitride (g-C2N) [Nat. Commun., 2015, 6, 6486]. Taking advantage of the inherent nanopores and excellent mechanical properties of g-C2N filter, highly efficient seawater desalination can be achieved by modulating the nanopores under tensile strain. The water permeability can be improved by two orders of magnitude compared to RO membranes, which offers a promising approach to the global water shortage solution.



قيم البحث

اقرأ أيضاً

110 - Jingwen Xu , Yan Li , Xuemei Zhou 2016
In this work, we introduce a facile procedure to graft a thin graphitic C3N4 (g-C3N4) layer on aligned TiO2 nanotube arrays (TiNT) by one-step chemical vapor deposition (CVD) approach. This provides a platform to enhance the visible-light response of TiO2 nanotubes for antimicrobial applications. The formed g- C3N4/TiNT binary nanocomposite exhibits excellent bactericidal efficiency against E. coli as a visiblelight activated antibacterial coating.
The search for earth abundant, efficient and stable electrocatalysts that can enable the chemical reduction of CO2 to value-added chemicals and fuels at an industrially relevant scale, is a high priority for the development of a global network of ren ewable energy conversion and storage systems that can meaningfully impact greenhouse gas induced climate change. Here we introduce a straightforward, low cost, scalable and technologically relevant method to manufacture an all-carbon, electroactive, nitrogen-doped nanoporous carbon-carbon nanotube composite membrane, dubbed HNCM-CNT. The membrane is demonstrated to function as a binder-free, high-performance electrode for the electrocatalytic reduction of CO2 to formate. The Faradaic efficiency for the production of formate is 81%. Furthermore, the robust structural and electrochemical properties of the membrane endow it with excellent long-term stability.
Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [Science 363, 151-155 (2019)] phenine nanotube (PNT) for water desalination a pplications. Using both equilibrium and non-equilibrium molecular dynamics simulations, we show that the PNT membrane completely rejects salts, but permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration. We provide the microscopic mechanisms of salt rejection and fast water-transport by calculating the free-energy landscapes and electrostatic potential profiles. A collective diffusion model accurately predicts the water permeability obtained from the simulations over a wide range of pressure gradients. We propose a method to calculate the osmotic pressure ($Pi$) from the simulation data and find that $Pi$ across the membrane is very low (~1-2 MPa), which thus makes it a suitable nanomaterial for energy-efficient reverse osmosis. These remarkable properties of PNT can be applied in various nanofluidic applications, such as ion-selective channels, ionic transistors, sensing, molecular sieving, and blue energy harvesting.
In the molecular dynamics calculations for the free energy of ions and ionic molecules, we often encounter wet charged molecular systems where electrical neutrality condition is broken. This causes a problem in the evaluation of electrostatic interac tion under periodic boundary condition. A standard remedy for the problem is to consider a hypothetical homogeneous background charge density to neutralize the total system. Here, we present a new expression for the evaluation of electrostatic interactions for the system including the background charge by fast multipole method (FMM). Further, an efficient scheme to evaluate solute-solvent interaction energy by FMM has been developed to reduce the computation of far-field part. We have calculated hydration free energy of ions, Mg$^{2+}$, Na$^{+}$, and Cl$^{-}$ dissolved in neutral solvent using the new expression. The calculated free energy showed a good agreement with the result using well-established particle mesh Ewald method, demonstrating the validity of the present expression in the framework of FMM. An advantage of the present scheme is in an efficient free energy calculation of a large-scale charged systems (particularly over million particles) based on highly parallel computations.
One of the most promising applications in nanoscience is the design of new materials to improve water permeability and selectivity of nanoporous membranes. Understanding the molecular architecture behind these fascinating structures and how it impact s the water flow is an intricate but necessary task. We studied here, the water flux through multi-layered nanoporous molybdenum disulfide (MLNMoS$_2$) membranes with different nanopore sizes and length. Molecular dynamics simulations show that the permeability do not increase with the inverse of the membrane thickness, violating the classical hydrodynamic behavior. The data also reveals that the water dynamics is slower than that observed in frictionless carbon nanotubes and multi-layer graphene membranes, which we explain in terms of an anchor mechanism observed in between layers. We show that the membrane permeability is critically dependent on the nanopore architecture, bringing important insights into the manufacture of new desalination membranes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا