ﻻ يوجد ملخص باللغة العربية
We construct a new perturbative framework to describe neutrino oscillation in matter with the unique expansion parameter epsilon, which is defined as Delta m^2_{21} / Delta m^2_{ren} with the renormalized atmospheric Delta m^2_{ren} equiv Delta m^2_{31} - s^2_{12} Delta m^2_{21}. It allows us to derive the maximally compact expressions of the oscillation probabilities in matter to order epsilon in the form akin to those in vacuum. This feature allows immediate physical interpretation of the formulas, and facilitates understanding of physics of neutrino oscillations in matter. Moreover, quite recently, we have shown that our three-flavor oscillation probabilities P( u_alpha rightarrow u_beta) in all channels can be expressed in the form of universal functions of L/E. The u_e disappearance oscillation probability P( u_e rightarrow u_e) has a special property that it can be written as the two-flavor form which depends on the single frequency. This talk is based on the collaborating work with Stephen Parke [1].
Motivated by tremendous progress in neutrino oscillation experiments, we derive a new set of simple and compact formulas for three-flavor neutrino oscillation probabilities in matter of a constant density. A useful definition of the $eta$-gauge neutr
It is known in vacuum that the three-flavor neutrino survival probability can be approximated by the effective two-flavor form to first orders in $epsilon equiv Delta m^2_{21} / Delta m^2_{31}$, with introduction of the effective $Delta m^2_{alpha al
In neutrino oscillations, a neutrino created with one flavor can be later detected with a different flavor, with some probability. In general, the probability is computed exactly by diagonalizing the Hamiltonian operator that describes the physical s
In this paper we review different expansions for neutrino oscillation probabilities in matter in the context of long-baseline neutrino experiments. We examine the accuracy and computational efficiency of different exact and approximate expressions. W
The flavor transformation in a dense neutrino gas can have a significant impact on the physical and chemical evolution of its surroundings. In this work we demonstrate that a dynamic, fast flavor oscillation wave can develop spontaneously in a one-di