ﻻ يوجد ملخص باللغة العربية
The addition of the QCD axion to the Minimal Supersymmetric Standard Model (MSSM) not only solves the strong CP problem but also modifies the dark sector with new dark matter candidates. While SUSY axion phenomenology is usually restricted to searches for the axion itself or searches for the ordinary SUSY particles, this work focuses on scenarios where the axions superpartner, the axino, may be detectable at the Large Hadron Collider (LHC) in the decays of neutralinos displaced from the primary vertex. In particular, we focus on the KSVZ axino within the hadronic axion window. The decay length of neutralinos in this scenario easily fits the ATLAS detector for SUSY spectra expected to be testable at the 14 TeV LHC. We compare this signature of displaced decays to axinos to other well motivated scenarios containing a long lived neutralino which decays inside the detector. These alternative scenarios can in some cases very closely mimic the expected axino signature, and the degree to which they are distinguishable is discussed. We also briefly comment on the cosmological viability of such a scenario.
Decay-frame Kinematics (DK) has previously been introduced as a technique to reconstruct neutralino masses from their three-body decays to leptons. This work is an extension to the case of two-body decays through on-shell sleptons, with Monte Carlo s
We investigate the current status of the light neutralino dark matter scenario within the minimal supersymmetric standard model (MSSM) taking into account latest results from the LHC. A discussion of the relevant constraints, in particular from the d
Recently there has been much interest in the use of single-jet mass and jet substructure to identify boosted particles decaying hadronically at the LHC. We develop these ideas to address the challenging case of a neutralino decaying to three quarks i
We study the Higgs boson $(h)$ decay to two light jets at the 14 TeV High-Luminosity-LHC (HL-LHC), where a light jet ($j$) represents any non-flavor tagged jet from the observational point of view. The decay mode $hto gg$ is chosen as the benchmark s
An axion-like particle (ALP) with mass $m_phi sim 10^{-15}$eV oscillates with frequency $sim$1 Hz. This mass scale lies in an open window of astrophysical constraints, and appears naturally as a consequence of grand unification (GUT) in string/M-theo