ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the Hadronic Axion Window via Delayed Neutralino Decay to Axinos at the LHC

40   0   0.0 ( 0 )
 نشر من قبل Doreen Wackeroth
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The addition of the QCD axion to the Minimal Supersymmetric Standard Model (MSSM) not only solves the strong CP problem but also modifies the dark sector with new dark matter candidates. While SUSY axion phenomenology is usually restricted to searches for the axion itself or searches for the ordinary SUSY particles, this work focuses on scenarios where the axions superpartner, the axino, may be detectable at the Large Hadron Collider (LHC) in the decays of neutralinos displaced from the primary vertex. In particular, we focus on the KSVZ axino within the hadronic axion window. The decay length of neutralinos in this scenario easily fits the ATLAS detector for SUSY spectra expected to be testable at the 14 TeV LHC. We compare this signature of displaced decays to axinos to other well motivated scenarios containing a long lived neutralino which decays inside the detector. These alternative scenarios can in some cases very closely mimic the expected axino signature, and the degree to which they are distinguishable is discussed. We also briefly comment on the cosmological viability of such a scenario.

قيم البحث

اقرأ أيضاً

108 - Z. Kang , N. Kersting , S. Kraml 2009
Decay-frame Kinematics (DK) has previously been introduced as a technique to reconstruct neutralino masses from their three-body decays to leptons. This work is an extension to the case of two-body decays through on-shell sleptons, with Monte Carlo s imulation of LHC collisions demonstrating reconstruction of neutralino masses for the SPS1a benchmark point.
We investigate the current status of the light neutralino dark matter scenario within the minimal supersymmetric standard model (MSSM) taking into account latest results from the LHC. A discussion of the relevant constraints, in particular from the d ark matter relic abundance, leads us to a manageable simplified model defined by a subset of MSSM parameters. Within this simplified model we reinterpret a recent search for electroweak supersymmetric particle production based on a signature including multi-taus plus missing transverse momentum performed by the ATLAS collaboration. In this way we derive stringent constraints on the light neutralino parameter space. In combination with further experimental information from the LHC, such as dark matter searches in the monojet channel and constraints on invisible Higgs decays, we obtain a lower bound on the lightest neutralino mass of about 24 GeV. This limit is stronger than any current limit set by underground direct dark matter searches or indirect detection experiments. With a mild improvement of the sensitivity of the multi-tau search, light neutralino dark matter can be fully tested up to about 30 GeV.
Recently there has been much interest in the use of single-jet mass and jet substructure to identify boosted particles decaying hadronically at the LHC. We develop these ideas to address the challenging case of a neutralino decaying to three quarks i n models with baryonic violation of R-parity. These decays have previously been found to be swamped by QCD backgrounds. We demonstrate for the first time that such a decay might be observed directly at the LHC with high significance, by exploiting characteristics of the scales at which its composite jet breaks up into subjets.
We study the Higgs boson $(h)$ decay to two light jets at the 14 TeV High-Luminosity-LHC (HL-LHC), where a light jet ($j$) represents any non-flavor tagged jet from the observational point of view. The decay mode $hto gg$ is chosen as the benchmark s ince it is the dominant channel in the Standard Model (SM), but the bound obtained is also applicable to the light quarks $(j=u,d,s)$. We estimate the achievable bounds on the decay branching fractions through the associated production $Vh (V=W^pm,Z)$. Events of the Higgs boson decaying into heavy (tagged) or light (un-tagged) jets are correlatively analyzed. We find that with 3000 fb$^{-1}$ data at the HL-LHC, we should expect approximately $1sigma$ statistical significance on the SM $Vh(gg)$ signal in this channel. This corresponds to a reachable upper bound ${rm BR}(hto jj) leq 4~ {rm BR}^{SM}(hto gg)$ at $95%$ confidence level. A consistency fit also leads to an upper bound ${rm BR}(hto cc) < 15~ {rm BR}^{SM}(hto cc)$ at $95%$ confidence level. The estimated bound may be further strengthened by adopting multiple variable analyses, or adding other production channels.
An axion-like particle (ALP) with mass $m_phi sim 10^{-15}$eV oscillates with frequency $sim$1 Hz. This mass scale lies in an open window of astrophysical constraints, and appears naturally as a consequence of grand unification (GUT) in string/M-theo ry. However, with a GUT-scale decay constant such an ALP overcloses the Universe, and cannot solve the strong CP problem. In this paper, we present a two axion model in which the 1 Hz ALP constitutes the entirety of the dark matter (DM) while the QCD axion solves the strong CP problem but contributes negligibly to the DM relic density. The mechanism to achieve the correct relic densities relies on low-scale inflation ($m_phi lesssim H_{rm inf}lesssim 1$ MeV), and we present explicit realisations of such a model. The scale in the axion potential leading to the 1 Hz axion generates a value for the strong CP phase which oscillates around $bar{theta}_{rm QCD}sim 10^{-12}$, within reach of the proton storage ring electric dipole moment experiment. The 1 Hz axion is also in reach of near future laboratory and astrophysical searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا