ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating the Spectral Anomaly with Different Reactor Antineutrino Experiments

68   0   0.0 ( 0 )
 نشر من قبل Julia Haser
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The spectral shape of reactor antineutrinos measured in recent experiments shows anomalies in comparison to neutrino reference spectra. New precision measurements of the reactor neutrino spectra as well as more complete input in nuclear data bases are needed to resolve the observed discrepancies between models and experimental results. This article proposes the combination of experiments at reactors which are highly enriched in ${}^{235}$U with commercial reactors with typically lower enrichment to gain new insights into the origin of the anomalous neutrino spectrum. The presented method clarifies, if the spectral anomaly is either solely or not at all related to the predicted ${}^{235}$U spectrum. Considering the current improvements of the energy scale uncertainty of present-day experiments, a significance of three sigma and above can be reached. As an example, we discuss the option of a direct comparison of the measured shape in the currently running Double Chooz near detector and the upcoming Stereo experiment. A quantitative feasibility study emphasizes that a precise understanding of the energy scale systematics is a crucial prerequisite in recent and next generation experiments investigating the spectral anomaly.



قيم البحث

اقرأ أيضاً

This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experi mental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 $pm$ 0.04) $times$ 10$^{-18}$~cm$^2$/GW/day or (5.92 $pm$ 0.14) $times$ 10$^{-43}$~cm$^2$/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is $0.946pm0.022$ ($0.991pm0.023$) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2$sigma$ over the full energy range with a local significance of up to $sim$4$sigma$ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.
The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse be ta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW$_{textrm{th}}$ reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective $^{239}$Pu fission fractions, $F_{239}$, from 0.25 to 0.35, Daya Bay measures an average IBD yield, $bar{sigma}_f$, of $(5.90 pm 0.13) times 10^{-43}$ cm$^2$/fission and a fuel-dependent variation in the IBD yield, $dsigma_f/dF_{239}$, of $(-1.86 pm 0.18) times 10^{-43}$ cm$^2$/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the $^{239}$Pu fission fraction at 10 standard deviations. The variation in IBD yield was found to be energy-dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1$sigma$. This discrepancy indicates that an overall deficit in measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes $^{235}$U, $^{239}$Pu, $^{238}$U, and $^{241}$Pu. Based on measured IBD yield variations, yields of $(6.17 pm 0.17)$ and $(4.27 pm 0.26) times 10^{-43}$ cm$^2$/fission have been determined for the two dominant fission parent isotopes $^{235}$U and $^{239}$Pu. A 7.8% discrepancy between the observed and predicted $^{235}$U yield suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.
Recently new reactor antineutrino spectra have been provided for 235U, 239Pu, 241Pu and 238U, increasing the mean flux by about 3 percent. To good approximation, this reevaluation applies to all reactor neutrino experiments. The synthesis of publishe d experiments at reactor-detector distances <100 m leads to a ratio of observed event rate to predicted rate of 0.976(0.024). With our new flux evaluation, this ratio shifts to 0.943(0.023), leading to a deviation from unity at 98.6% C.L. which we call the reactor antineutrino anomaly. The compatibility of our results with the existence of a fourth non-standard neutrino state driving neutrino oscillations at short distances is discussed. The combined analysis of reactor data, gallium solar neutrino calibration experiments, and MiniBooNE-neutrino data disfavors the no-oscillation hypothesis at 99.8% C.L. The oscillation parameters are such that |Delta m_{new}^2|>1.5 eV^2 (95%) and sin^2(2theta_{new})=0.14(0.08) (95%). Constraints on the theta13 neutrino mixing angle are revised.
A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9~GW$_{mathrm{th}}$ nuclear reactors and detected by eight antineutrino detector s deployed in two near (560~m and 600~m flux-weighted baselines) and one far (1640~m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be $0.946pm0.020$ ($0.992pm0.021$) for the Huber+Mueller (ILL+Vogel) model. A 2.9~$sigma$ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6~MeV was found in the measured spectrum, with a local significance of 4.4~$sigma$. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.
175 - Haoqi Lu 2014
Neutrinos are elementary particles in the standard model of particle physics. There are 3 flavors of neutrinos that oscillate among themselves. Their oscillation can be described by a 3$times$3 unitary matrix, containing three mixing angles $theta_{1 2}$, $theta_{23}$, $theta_{13}$, and one CP phase. Both $theta_{12}$ and $theta_{23}$ are known from previous experiments. $theta_{13}$ was unknown just two years ago. The Daya Bay experiment gave the first definitive non-zero value in 2012. An improved measurement of the oscillation amplitude $sin^{2}2(theta_{13})$ = $0.090^{+0.008}_{-0.009}$ and the first direct measurement of the $bar u_{e}$ mass-squared difference $mid$$Delta m^2_{ee}$$mid$ = $(2.59^{+0.19}_{-0.20})times10^{-3} rm eV^{2}$ were obtained recently. The large value of $theta_{13}$ boosts the next generation of reactor antineutrino experiments designed to determine the neutrino mass hierarchy, such as JUNO and RENO-50 .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا