ﻻ يوجد ملخص باللغة العربية
An $(alpha,beta)$-manifold $(M,F)$ is a Finsler manifold with the Finsler metric $F$ being defined by a Riemannian metric $alpha$ and $1$-form $beta$ on the manifold $M$. In this paper, we classify $n$-dimensional $(alpha,beta)$-manifolds (non-Randers type) which are positively complete and locally projectively flat. We show that the non-trivial class is that $M$ is homeomorphic to the $n$-sphere $S^n$ and $(S^n,F)$ is projectively related to a standard spherical Riemannian manifold, and then we obtain some special geometric properties on the geodesics and scalar flag curvature of $F$ on $S^n$, especially when $F$ is a metric of general square type.
In this paper, a characteristic condition of the projectively flat Kropina metric is given. By it, we prove that a Kropina metric $F=alpha^2/beta$ with constant curvature $K$ and $|beta|_{alpha}=1$ is projectively flat if and only if $F$ is locally Minkowskian.
In this paper, it is proved that any conformal vector field is homothetic on a locally projectively flat $(alpha,beta)$-space of non-Randers type in dimension $nge 3$, and the local solutions of such a vector field are determined. While on a locally
An $(alpha,beta)$-metric is defined by a Riemannian metric and $1$-form. In this paper, we investigate the known characterization for $(alpha,beta)$-metrics of isotropic S-curvature. We show that such a characterization should hold in dimension $nge
In this work, we consider a class of Finsler metrics using the warped product notion introduced by Chen, S. and Zhao (2018), with another warping, one that is consistent with static spacetimes. We will give the PDE characterization for the proposed m
An $(alpha,beta)$-metric is defined by a Riemannian metric $alpha$ and $1$-form $beta$. In this paper, we study a known class of two-dimensional $(alpha,beta)$-metrics of vanishing S-curvature. We determine the local structure of those metrics and sh