ترغب بنشر مسار تعليمي؟ اضغط هنا

On a Class of Complete and Projectively Flat Finsler Metrics

144   0   0.0 ( 0 )
 نشر من قبل Guojun Yang
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Guojun Yang




اسأل ChatGPT حول البحث

An $(alpha,beta)$-manifold $(M,F)$ is a Finsler manifold with the Finsler metric $F$ being defined by a Riemannian metric $alpha$ and $1$-form $beta$ on the manifold $M$. In this paper, we classify $n$-dimensional $(alpha,beta)$-manifolds (non-Randers type) which are positively complete and locally projectively flat. We show that the non-trivial class is that $M$ is homeomorphic to the $n$-sphere $S^n$ and $(S^n,F)$ is projectively related to a standard spherical Riemannian manifold, and then we obtain some special geometric properties on the geodesics and scalar flag curvature of $F$ on $S^n$, especially when $F$ is a metric of general square type.



قيم البحث

اقرأ أيضاً

In this paper, a characteristic condition of the projectively flat Kropina metric is given. By it, we prove that a Kropina metric $F=alpha^2/beta$ with constant curvature $K$ and $|beta|_{alpha}=1$ is projectively flat if and only if $F$ is locally Minkowskian.
176 - Guojun Yang 2014
In this paper, it is proved that any conformal vector field is homothetic on a locally projectively flat $(alpha,beta)$-space of non-Randers type in dimension $nge 3$, and the local solutions of such a vector field are determined. While on a locally projectively flat Randers space, examples showthat the conformal vector fields are not necessarily homothetic.
173 - Guojun Yang 2013
An $(alpha,beta)$-metric is defined by a Riemannian metric and $1$-form. In this paper, we investigate the known characterization for $(alpha,beta)$-metrics of isotropic S-curvature. We show that such a characterization should hold in dimension $nge 3$, and for the 2-dimensional case, there is one more class of isotropic S-curvature than the higher dimensional ones. Further, we construct corresponding examples for every two-dimensional class, especially for the class that the norm of $beta$ with respect to $alpha$ is not a constant.
In this work, we consider a class of Finsler metrics using the warped product notion introduced by Chen, S. and Zhao (2018), with another warping, one that is consistent with static spacetimes. We will give the PDE characterization for the proposed m etrics to be Ricci-flat and explicitly construct two non-Riemannian examples.
142 - Guojun Yang 2014
An $(alpha,beta)$-metric is defined by a Riemannian metric $alpha$ and $1$-form $beta$. In this paper, we study a known class of two-dimensional $(alpha,beta)$-metrics of vanishing S-curvature. We determine the local structure of those metrics and sh ow that those metrics are Einsteinian (equivalently, isotropic flag curvature) but generally are not Ricci-flat.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا