ﻻ يوجد ملخص باللغة العربية
We address the question whether the condition on a fusion category being solvable or not is determined by its fusion rules. We prove that the answer is affirmative for some families of non-solvable examples arising from representations of semisimple Hopf algebras associated to exact factorizations of the symmetric and alternating groups. In the context of spherical fusion categories, we also consider the invariant provided by the $S$-matrix of the Drinfeld center and show that this invariant does determine the solvability of a fusion category provided it is group-theoretical.
We give a necessary and sufficient condition in terms of group cohomology for two indecomposable module categories over a group-theoretical fusion category ${mathcal C}$ to be equivalent. This concludes the classification of such module categories.
We present an algorithm for an efficient calculation of the fusion rules of twisted representations of untwisted affine Lie algebras. These fusion rules appear in WZW orbifold theories and as annulus coefficients in boundary WZW theories; they provide NIM-reps of the WZW fusion rules.
We show how the fusion rules for an affine Kac-Moody Lie algebra g of type A_{n-1}, n = 2 or 3, for all positive integral level k, can be obtained from elementary group theory. The orbits of the kth symmetric group, S_k, acting on k-tuples of integer
We show that the core of a weakly group-theoretical braided fusion category $C$ is equivalent as a braided fusion category to a tensor product $B boxtimes D$, where $D$ is a pointed weakly anisotropic braided fusion category, and $B cong vect$ or $B$
This is an expository introduction to fusion rules for affine Kac-Moody algebras, with major focus on the algorithmic aspects of their computation and the relationship with tensor product decompositions. Many explicit examples are included with figur