ترغب بنشر مسار تعليمي؟ اضغط هنا

Heisenberg-Weyl Observables: Bloch vectors in phase space

103   0   0.0 ( 0 )
 نشر من قبل Ali Asadian
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a Hermitian generalization of Pauli matrices to higher dimensions which is based on Heisenberg-Weyl operators. The complete set of Heisenberg-Weyl observables allows us to identify a real-valued Bloch vector for an arbitrary density operator in discrete phase space, with a smooth transition to infinite dimensions. Furthermore, we derive bounds on the sum of expectation values of any set of anti-commuting observables. Such bounds can be used in entanglement detection and we show that Heisenberg-Weyl observables provide a first non-trivial example beyond the dichotomic case.



قيم البحث

اقرأ أيضاً

In the Bloch sphere based representation of qudits with dimensions greater than two, the Heisenberg-Weyl operator basis is not preferred because of presence of complex Bloch vector components. We try to address this issue and parametrize a qutrit usi ng the Heisenberg-Weyl operators by identifying eight real parameters and separate them as four weight and four angular parameters each. The four weight parameters correspond to the weights in front of the four mutually unbiased bases sets formed by the eigenbases of Heisenberg-Weyl observables and they form a four-dimensional unit radius Bloch hypersphere. Inside the four-dimensional hypersphere all points do not correspond to a physical qutrit state but still it has several other features which indicate that it is a natural extension of the qubit Bloch sphere. We study the purity, rank of three level systems, orthogonality and mutual unbiasedness conditions and the distance between two qutrit states inside the hypersphere. We also analyze the two and three-dimensional sections centered at the origin which gives a close structure for physical qutrit states inside the hypersphere. Significantly, we have applied our representation to find mutually unbiased bases(MUBs) and to characterize the unital maps in three dimensions. It should also be possible to extend this idea in higher dimensions.
In the present article, we consistently develop the main issues of the Bloch vectors formalism for an arbitrary finite-dimensional quantum system. In the frame of this formalism, qudit states and their evolution in time, qudit observables and their e xpectations, entanglement and nonlocality, etc. are expressed in terms of the Bloch vectors -- the vectors in the Euclidean space $mathbb{R}^{d^{2}-1}$ arising under decompositions of observables and states in different operator bases. Within this formalism, we specify for all $dgeq2$ the set of Bloch vectors of traceless qudit observables and describe its properties; also, find for the sets of the Bloch vectors of qudit states, pure and mixed, the new compact expressions in terms of the operator norms that explicitly reveal the general properties of these sets and have the unified form for all $dgeq2$. For the sets of the Bloch vectors of qudit states under the generalized Gell-Mann representation, these general properties cannot be analytically extracted from the known equivalent specifications of these sets via the system of algebraic equations. We derive the general equations describing the time evolution of the Bloch vector of a qudit state if a qudit system is isolated and if it is open and find for both cases the main properties of the Bloch vector evolution in time. For a pure bipartite state of a dimension $d_{1}times d_{2}$, we quantify its entanglement in terms of the Bloch vectors for its reduced states. The introduced general formalism is important both for the theoretical analysis of quantum system properties and for quantum applications, in particular, for optimal quantum control, since, for systems where states are described by vectors in the Euclidean space, the methods of optimal control, analytical and numerical, are well developed.
54 - Ruggero Vaia 2016
Bogoliubov transformations have been successfully applied in several Condensed Matter contexts, e.g., in the theory of superconductors, superfluids, and antiferromagnets. These applications are based on bulk models where translation symmetry can be a ssumed, so that few degrees of freedom in Fourier space can be `diagonalized separately, and in this way it is easy to find the approximate ground state and its excitations. As translation symmetry cannot be invoked when it comes about nanoscopic systems, the corresponding multidimensional Bogoliubov transformations are more complicated. For bosonic systems it is much simpler to proceed using phase-space variables, i.e., coordinates and momenta. Interactions can be accounted for by the self-consistent harmonic approximation, which is naturally developed using phase-space Weyl symbols. The spin-flop transition in a short antiferromagnetic chain is illustrated as an example. This approach, rarely used in the past, is expected to be generally useful to estimate quantum effects, e.g., on phase diagrams of ordered vs disordered phases.
We consider an algebraic formulation of Quantum Theory and develop a combinatorial model of the Heisenberg-Weyl algebra structure. It is shown that by lifting this structure to the richer algebra of graph operator calculus, we gain a simple interpret ation involving, for example, the natural composition of graphs. This provides a deeper insight into the algebraic structure of Quantum Theory and sheds light on the intrinsic combinatorial underpinning of its abstract formalism.
We present a list of formulae useful for Weyl-Heisenberg integral quantizations, with arbitrary weight, of functions or distributions on the plane. Most of these formulae are known, others are original. The list encompasses particular cases like Weyl -Wigner quantization (constant weight) and coherent states (CS) or Berezin quantization (Gaussian weight). The formulae are given with implicit assumptions on their validity on appropriate space(s) of functions (or distributions). One of the aims of the document is to accompany a work in progress on Weyl-Heisenberg integral quantization of dynamics for the motion of a point particle on the line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا