ﻻ يوجد ملخص باللغة العربية
Teleportation protocol is conventionally treated as a method for quantum state transfer between two spatially separated physical carriers. Recent experimental progress in manipulation with high-dimensional quantum systems opens a new framework for implementation of teleportation protocols. We show that the one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of an indivisible eight-dimensional system. We explicitly show all corresponding operations and discuss an alternative way of implementation of similar tasks.
We report the first state-independent experimental test of quantum contextuality on a single photonic qutrit (three-dimensional system), based on a recent theoretical proposal [Yu and Oh, Phys. Rev. Lett. 108, 030402 (2012)]. Our experiment spotlight
We argue that the experiment described in the recent Letter by Zu et al. [Phys. Rev. Lett. 109, 150401 (2012); arXiv:1207.0059v1] does not allow to make conclusions about contextuality, since the measurement of the observables as well as the preparat
This is a reply to the comment from E. Amselem et al. on our paper (Phys. Rev. Lett. 109, 150401 (2012), arXiv:1207.0059).
Quantum mechanics provides a statistical description about nature, and thus would be incomplete if its statistical predictions could not be accounted for by some realistic models with hidden variables. There are, however, two powerful theorems agains
We propose a protocol to achieve high fidelity quantum state teleportation of a macroscopic atomic ensemble using a pair of quantum-correlated atomic ensembles. We show how to prepare this pair of ensembles using quasiperfect quantum state transfer p