ترغب بنشر مسار تعليمي؟ اضغط هنا

The Schottky-type specific heat as an indicator of relative degeneracy between ground and first-excited states: the case study of regular Ising polyhedra

31   0   0.0 ( 0 )
 نشر من قبل Jozef Strecka
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The specific heat of regular Ising polyhedra is investigated in detail as a function of temperature and magnetic field. It is shown that the regular Ising polyhedra display diverse double-peak temperature dependences of the specific heat whenever the magnetic field approaches a level-crossing field. The Schottky theory of a two-level system often provides a plausible explanation of a height and position of low-temperature peak, which emerges in the specific heat of a regular Ising polyhedron due to low-lying excitations from a ground state to a first-excited state. The height and position of Schottky-type maximum depends essentially on a relative degeneracy of the ground state and first-excited state, which are in general quite distinct in geometrically frustrated Ising spin clusters. Low-temperature variations of the specific heat with the magnetic field exhibit multipeak structure with two peaks (of generally different height) symmetrically placed around each level-crossing field.

قيم البحث

اقرأ أيضاً

Magnetization process and adiabatic demagnetization of the antiferromagnetic Ising spin clusters with the shape of regular polyhedra (Platonic solids) are exactly examined within the framework of a simple graph-theoretical approach. While the Ising c ube as the only unfrustrated (bipartite) spin cluster shows just one trivial plateau at zero magnetization, the other regular Ising polyhedra (tetrahedron, octahedron, icosahedron and dodecahedron) additionally display either one or two intermediate plateaux at fractional values of the saturation magnetization. The nature of highly degenerate ground states emergent at intermediate plateaux owing to a geometric frustration is clarified. It is evidenced that the regular Ising polyhedra exhibit a giant magnetocaloric effect in a vicinity of magnetization jumps, whereas the Ising octahedron and dodecahedron belong to the most prominent geometrically frustrated spin clusters that enable an efficient low-temperature refrigeration by the process of adiabatic demagnetization.
In this paper, we use the dimer method to obtain the free energy of Ising models consisting of repeated horizontal strips of width $m$ connected by sequences of vertical strings of length $n$ mutually separated by distance $N$, with $N$ arbitrary, to investigate the effects of connectivity and proximity on the specific heat. The decoration method is used to transform the strings of $n+1$ spins interacting with their nearest neighbors with coupling $J$ into a pair with coupling $bar J$ between the two spins. The free energy per site is given as a single integral and some results for critical temperatures are derived.
The bond-propagation (BP) algorithm for the specific heat of the two dimensional Ising model is developed and that for the internal energy is completed. Using these algorithms, we study the critical internal energy and specific heat of the model on t he square lattice and triangular lattice with free boundaries. Comparing with previous works [X.-T. Wu {it et al} Phys. Rev. E {bf 86}, 041149 (2012) and Phys. Rev. E {bf 87}, 022124 (2013)], we reach much higher accuracy ($10^{-26}$) of the internal energy and specific heat, compared to the accuracy $10^{-11}$ of the internal energy and $10^{-9}$ of the specific heat reached in the previous works. This leads to much more accurate estimations of the edge and corner terms. The exact values of some edge and corner terms are therefore conjectured. The accurate forms of finite-size scaling for the internal energy and specific heat are determined for the rectangle-shaped square lattice with various aspect ratios and various shaped triangular lattice. For the rectangle-shaped square and triangular lattices and the triangle-shaped triangular lattice, there is no logarithmic correction terms of order higher than 1/S, with S the area of the system. For the triangular lattice in rhombus, trapezoid and hexagonal shapes, there exist logarithmic correction terms of order higher than 1/S for the internal energy, and logarithmic correction terms of all orders for the specific heat.
We study dipolarly coupled three dimensional spin systems in both the microcanonical and the canonical ensembles by introducing appropriate numerical methods to determine the microcanonical temperature and by realizing a canonical model of heat bath. In the microcanonical ensemble, we show the existence of a branch of stable antiferromagnetic states in the low energy region. Other metastable ferromagnetic states exist in this region: by externally perturbing them, an effective negative specific heat is obtained. In the canonical ensemble, for low temperatures, the same metastable states are unstable and reach a new branch of more robust metastable states which is distinct from the stable one. Our statistical physics approach allows us to put some order in the complex structure of stable and metastable states of dipolar systems.
We study a two dimensional Ising model between thermostats at different temperatures. By applying the recently introduced KQ dynamics, we show that the system reaches a steady state with coexisting phases transversal to the heat flow. The relevance o f such complex states on thermodynamic or geometrical observables is investigated. In particular, we study energy, magnetization and metric properties of interfaces and clusters which, in principle, are sensitive to local features of configurations. With respect to equilibrium states, the presence of the heat flow amplifies the fluctuations of both thermodynamic and geometrical observables in a domain around the critical energy. The dependence of this phenomenon on various parameters (size, thermal gradient, interaction) is discussed also with reference to other possible diffusive models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا