ترغب بنشر مسار تعليمي؟ اضغط هنا

The Prisoners dilemma as a cancer model

177   0   0.0 ( 0 )
 نشر من قبل Jeffrey West
 تاريخ النشر 2015
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tumor development is an evolutionary process in which a heterogeneous population of cells with differential growth capabilities compete for resources in order to gain a proliferative advantage. What are the minimal ingredients needed to recreate some of the emergent features of such a developing complex ecosystem? What is a tumor doing before we can detect it? We outline a mathematical model, driven by a stochastic Moran process, in which cancer cells and healthy cells compete for dominance in the population. Each are assigned payoffs according to a Prisoners Dilemma evolutionary game where the healthy cells are the cooperators and the cancer cells are the defectors. With point mutational dynamics, heredity, and a fitness landscape controlling birth and death rates, natural selection acts on the cell population and simulated cancer-like features emerge, such as Gompertzian tumor growth driven by heterogeneity, the log-kill law which (linearly) relates therapeutic dose density to the (log) probability of cancer cell survival, and the Norton-Simon hypothesis which (linearly) relates tumor regression rates to tumor growth rates. We highlight the utility, clarity, and power that such models provide, despite (and because of) their simplicity and built-in assumptions.



قيم البحث

اقرأ أيضاً

463 - Minjae Kim , Jung-Kyoo Choi , 2021
Evolutionary game theory assumes that players replicate a highly scored players strategy through genetic inheritance. However, when learning occurs culturally, it is often difficult to recognize someones strategy just by observing the behaviour. In t his work, we consider players with memory-one stochastic strategies in the iterated prisoners dilemma, with an assumption that they cannot directly access each others strategy but only observe the actual moves for a certain number of rounds. Based on the observation, the observer has to infer the resident strategy in a Bayesian way and chooses his or her own strategy accordingly. By examining the best-response relations, we argue that players can escape from full defection into a cooperative equilibrium supported by Win-Stay-Lose-Shift in a self-confirming manner, provided that the cost of cooperation is low and the observational learning supplies sufficiently large uncertainty.
We study a spatial, one-shot prisoners dilemma (PD) model in which selection operates on both an organisms behavioral strategy (cooperate or defect) and its choice of when to implement that strategy across a set of discrete time slots. Cooperators ev olve to fixation regularly in the model when we add time slots to lattices and small-world networks, and their portion of the population grows, albeit slowly, when organisms interact in a scale-free network. This selection for cooperators occurs across a wide variety of time slots and it does so even when a crucial condition for the evolution of cooperation on graphs is violated--namely, when the ratio of benefits to costs in the PD does not exceed the number of spatially-adjacent organisms.
The n-person Prisoners Dilemma is a widely used model for populations where individuals interact in groups. The evolutionary stability of populations has been analysed in the literature for the case where mutations in the population may be considered as isolated events. For this case, and assuming simple trigger strategies and many iterations per game, we analyse the rate of convergence to the evolutionarily stable populations. We find that for some values of the payoff parameters of the Prisoners Dilemma this rate is so low that the assumption, that mutations in the population are infrequent on that timescale, is unreasonable. Furthermore, the problem is compounded as the group size is increased. In order to address this issue, we derive a deterministic approximation of the evolutionary dynamics with explicit, stochastic mutation processes, valid when the population size is large. We then analyse how the evolutionary dynamics depends on the following factors: mutation rate, group size, the value of the payoff parameters, and the structure of the initial population. In order to carry out the simulations for groups of more than just a few individuals, we derive an efficient way of calculating the fitness values. We find that when the mutation rate per individual and generation is very low, the dynamics is characterised by populations which are evolutionarily stable. As the mutation rate is increased, other fixed points with a higher degree of cooperation become stable. For some values of the payoff parameters, the system is characterised by (apparently) stable limit cycles dominated by cooperative behaviour. The parameter regions corresponding to high degree of cooperation grow in size with the mutation rate, and in number with the group size.
We study the problem of the emergence of cooperation in the spatial Prisoners Dilemma. The pioneering work by Nowak and May showed that large initial populations of cooperators can survive and sustain cooperation in a square lattice with imitate-the- best evolutionary dynamics. We revisit this problem in a cost-benefit formulation suitable for a number of biological applications. We show that if a fixed-amount reward is established for cooperators to share, a single cooperator can invade a population of defectors and form structures that are resilient to re-invasion even if the reward mechanism is turned off. We discuss analytically the case of the invasion by a single cooperator and present agent-based simulations for small initial fractions of cooperators. Large cooperation levels, in the sustainability range, are found. In the conclusions we discuss possible applications of this model as well as its connections with other mechanisms proposed to promote the emergence of cooperation.
In the evolutionary Prisoners Dilemma (PD) game, agents play with each other and update their strategies in every generation according to some microscopic dynamical rule. In its spatial version, agents do not play with every other but, instead, inter act only with their neighbors, thus mimicking the existing of a social or contact network that defines who interacts with whom. In this work, we explore evolutionary, spatial PD systems consisting of two types of agents, each with a certain update (reproduction, learning) rule. We investigate two different scenarios: in the first case, update rules remain fixed for the entire evolution of the system; in the second case, agents update both strategy and update rule in every generation. We show that in a well-mixed population the evolutionary outcome is always full defection. We subsequently focus on two-strategy competition with nearest-neighbor interactions on the contact network and synchronized update of strategies. Our results show that, for an important range of the parameters of the game, the final state of the system is largely different from that arising from the usual setup of a single, fixed dynamical rule. Furthermore, the results are also very different if update rules are fixed or evolve with the strategies. In these respect, we have studied representative update rules, finding that some of them may become extinct while others prevail. We describe the new and rich variety of final outcomes that arise from this co-evolutionary dynamics. We include examples of other neighborhoods and asynchronous updating that confirm the robustness of our conclusions. Our results pave the way to an evolutionary rationale for modelling social interactions through game theory with a preferred set of update rules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا