ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular analysis of the $B^{0}rightarrow K^{*0}mu^{+}mu^{-}$ decay using $3,mbox{fb}^{-1}$ of integrated luminosity

116   0   0.0 ( 0 )
 نشر من قبل Christoph Langenbruch
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An angular analysis of the $B^{0}rightarrow K^{*0}(rightarrow K^{+}pi^{-})mu^{+}mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0,{mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C!P$-averaged observables and $C!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1<q^{2}<6.0mathrm{,Gekern -0.1em V}^{2}/c^{4}$, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of $C!P$-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions.



قيم البحث

اقرأ أيضاً

We present an angular analysis of the $B^{+}rightarrow K^{ast+}(rightarrow K_{S}^{0}pi^{+})mu^{+}mu^{-}$ decay using 9$,mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}rightarrow K^{ast0}mu^{+}mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.
The angular distribution and differential branching fraction of the decay $B^{0} to K^{*0} mu^{+}mu^{-}$ are studied using a data sample, collected by the LHCb experiment in $pp$ collisions at $sqrt{s}=7,{rm TeV}$, corresponding to an integrated lumi nosity of $1.0,{rm fb}^{-1}$. Several angular observables are measured in bins of the dimuon invariant mass squared, $q^{2}$. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be $q_{0}^{2} = 4.9 pm 0.9 ,{rm GeV}^{2}/c^{4}$, where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions.
The direct $C!P$ asymmetries of the decays $B^0 rightarrow K^{*0} mu^+ mu^-$ and $B^+ rightarrow K^{+} mu^+ mu^-$ are measured using $pp$ collision data corresponding to an integrated luminosity of 3.0$mbox{fb}^{-1}$ collected with the LHCb detector. The respective control modes $B^0 rightarrow J/psi K^{*0}$ and $B^+ rightarrow J/psi K^{+}$ are used to account for detection and production asymmetries. The measurements are made in several intervals of $mu^+ mu^-$ invariant mass squared, with the $phi(1020)$ and charmonium resonance regions excluded. Under the hypothesis of zero $C!P$ asymmetry in the control modes, the average values of the asymmetries are begin{align} {cal A}_{C!P}(B^0 rightarrow K^{*0} mu^+ mu^-) &= -0.035 pm 0.024 pm 0.003, cr {cal A}_{C!P}(B^+ rightarrow K^{+} mu^+ mu^-) &= phantom{-}0.012 pm 0.017 pm 0.001, end{align} where the first uncertainties are statistical and the second are due to systematic effects. Both measurements are consistent with the Standard Model prediction of small $C!P$ asymmetry in these decays.
A search for the decay $B_{s}^0 rightarrow overline{K}{}^{*0}mu^+mu^-$ is presented using data sets corresponding to 1.0, 2.0 and 1.6 $text{fb}^{-1}$ of integrated luminosity collected during $pp$ collisions with the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV, respectively. An excess is found over the background-only hypothesis with a significance of 3.4 standard deviations. The branching fraction of the $B_{s}^0 rightarrow overline{K}{}^{*0}mu^+mu^-$ decay is determined to be $mathcal{B}(B_{s}^0 rightarrow overline{K}{}^{*0}mu^+mu^-) = [2.9 pm 1.0~(text{stat}) pm 0.2~(text{syst}) pm 0.3~(text{norm})] times 10^{-8}$, where the first and second uncertainties are statistical and systematic, respectively. The third uncertainty is due to limited knowledge of external parameters used to normalise the branching fraction measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا