ﻻ يوجد ملخص باللغة العربية
A novel large volume spherical proportional counter, recently developed, is used for neutron measurements. Gas mixtures of $N_{2}$ with $C_{2}H_{6}$ and pure $N_{2}$ are studied for thermal and fast neutron detection, providing a new way for the neutron spectroscopy. The neutrons are detected via the ${}^{14}N(n, p)C^{14}$ and ${}^{14}N(n, alpha)B^{11}$ reactions. Here we provide studies of the optimum gas mixture, the gas pressure and the most appropriate high voltage supply on the sensor of the detector in order to achieve the maximum amplification and better resolution. The detector is tested for thermal and fast neutrons detection with a ${}^{252}Cf$ and a ${}^{241}Am-{}^{9}Be$ neutron source. The atmospheric neutrons are successfully measured from thermal up to several MeV, well separated from the cosmic ray background. A comparison of the spherical proportional counter with the current available neutron counters is also given.
We present a novel concept of proportional gas amplification for the read-out of the spherical proportional counter. The standard single-ball read-out presents limitations for large diameter spherical detectors and high pressure operations. We have d
Precise in-situ measurements of the neutron flux in underground laboratories is crucial for direct dark matter searches, as neutron induced backgrounds can mimic the typical dark matter signal. The development of a novel neutron spectroscopy techniqu
A new anode support structure for the spherical proportional counter is presented that incorporates a resistive correction electrode made of glass. This electrode improves the electric field homogeneity versus angle while suppressing the probability
The Spherical Proportional Counter is a novel type of radiation detector, with a low energy threshold (typically below 100 eV) and good energy resolution. This detector is being developed by the network NEWS, which includes several applications. We c
A method of measurements of the environmental neutron background at the Baksan Neutrino Observatory of the INR RAS are described. Measurements were done by using of a proportional counter filled with mixture of Ar(2 at)+$^3$He(4 at). The results obta