ﻻ يوجد ملخص باللغة العربية
Lattice QCD calculations of baryon forces are performed for the first time with (almost) physical quark masses. $N_f = 2+1$ dynamical clover fermion gauge configurations are generated at the lattice spacing of $a simeq 0.085$ fm on a $(96 a)^4 simeq (8.2 {rm fm})^4$ lattice with quark masses corresponding to $(m_pi, m_K) simeq (146, 525)$ MeV. Baryon forces are calculated using the time-dependent HAL QCD method. In this report, we study $XiXi$ and $NN$ systems both in $^1S_0$ and $^3S_1$-$^3D_1$ channels, and the results for the central and tensor forces as well as phase shifts in the $XiXi$ $(^1S_0)$ channel are presented.
We present the lattice QCD studies for baryon-baryon interactions for the first time with (almost) physical quark masses. $N_f = 2+1$ gauge configurations are generated with the Iwasaki gauge action and nonperturbatively $O(a)$-improved Wilson quark
We calculate the low-lying spectrum of charmed baryons in lattice QCD on the $32^3times64$, $N_f=2+1$ PACS-CS gauge configurations at the almost physical pion mass of $sim 156$ MeV/c$^2$. By employing a set of interpolating operators with different D
We present the latest lattice QCD results for baryon interactions obtained at nearly physical quark masses. $N_f = 2+1$ nonperturbatively ${cal O}(a)$-improved Wilson quark action with stout smearing and Iwasaki gauge action are employed on the latti
In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two
We investigate the charmed baryon mass spectrum using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on $32^3 times 64$ lattice. The dynamical up-down and strange quark masses are set to the physical val