ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a method for temporal segmentation of human repetitive actions based on frequency analysis of kinematic parameters, zero-velocity crossing detection, and adaptive k-means clustering. Since the human motion data may be captured with different modalities which have different temporal sampling rate and accuracy (e.g., optical motion capture systems vs. Microsoft Kinect), we first apply a generic full-body kinematic model with an unscented Kalman filter to convert the motion data into a unified representation that is robust to noise. Furthermore, we extract the most representative kinematic parameters via the primary frequency analysis. The sequences are segmented based on zero-velocity crossing of the selected parameters followed by an adaptive k-means clustering to identify the repetition segments. Experimental results demonstrate that for the motion data captured by both the motion capture system and the Microsoft Kinect, our proposed algorithm obtains robust segmentation of repetitive action sequences.
Human activity, which usually consists of several actions, generally covers interactions among persons and or objects. In particular, human actions involve certain spatial and temporal relationships, are the components of more complicated activity, a
We propose a new approach to human clothing modeling based on point clouds. Within this approach, we learn a deep model that can predict point clouds of various outfits, for various human poses and for various human body shapes. Notably, outfits of v
Predicting the future paths of an agents neighbors accurately and in a timely manner is central to the autonomous applications for collision avoidance. Conventional approaches, e.g., LSTM-based models, take considerable computational costs in the pre
We address the problem of temporal localization of repetitive activities in a video, i.e., the problem of identifying all segments of a video that contain some sort of repetitive or periodic motion. To do so, the proposed method represents a video by
Accurate segmentation of breast lesions is a crucial step in evaluating the characteristics of tumors. However, this is a challenging task, since breast lesions have sophisticated shape, topological structure, and variation in the intensity distribut