ﻻ يوجد ملخص باللغة العربية
An approach is proposed for evaluating dipolar and multipolar inter-site interactions in strongly correlated materials. This approach is based on the single-site dynamical mean-field theory (DMFT) in conjunction with the atomic approximation for the local self-energy. Starting from the local moment paramagnetic state described by DMFT we derive inter-site interactions by considering the response of the DMFT grand potential to small fluctuations of atomic configurations on two neighboring sites. The present method is validated by applying it to one-band and two-band e$_g$ Hubbard models on the simple-cubic 3$d$ lattice. It is also applied to study the spin-orbital order in the parent cubic structure of ternary chromium fluoride KCrF$_3$. We obtain the onset of a G-type antiferro-orbital order at a significantly lower temperature compared to that in real distorted KCrF$_3$. In contrast, its layered A-type antiferromagnetic order and Neel temperature are rather well reproduced. The calculated full Kugel-Khomskii Hamiltonian contains spin-orbital coupling terms inducing a misalignment in the antiferro-orbital order upon the onset of antiferromagnetism.
The origin of non-collinear magnetic order in UO$_{2}$ is studied by an ab initio dynamical-mean-field-theory framework in conjunction with a linear-response approach for evaluating inter-site superexchange interactions between U 5$f^{2}$ shells. The
We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We
We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations
We discuss the problem of a possible violation of the optical sum rule in the normal (non superconducting) state of strongly correlated electronic systems, using our recently proposed DMFT+Sigma approach, applied to two typical models: the hot - spot
Excitonic insulator is a coherent electronic phase that results from the formation of a macroscopic population of bound particle-hole pairs - excitons. With only a few candidate materials known, the collective excitonic behavior is challenging to obs