ترغب بنشر مسار تعليمي؟ اضغط هنا

An estimate of the hadronic vacuum polarization disconnected contribution to the anomalous magnetic moment of the muon from lattice QCD

311   0   0.0 ( 0 )
 نشر من قبل Christine T. H. Davies
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The quark-line disconnected diagram is a potentially important ingredient in lattice QCD calculations of the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. It is also a notoriously difficult one to evaluate. Here, for the first time, we give an estimate of this contribution based on lattice QCD results that have a statistically significant signal, albeit at one value of the lattice spacing and an unphysically heavy value of the $u/d$ quark mass. We use HPQCDs method of determining the anomalous magnetic moment by reconstructing the Adler function from time-moments of the current-current correlator at zero spatial momentum. Our results lead to a total (including $u$, $d$ and $s$ quarks) quark-line disconnected contribution to $a_{mu}$ of $-0.15%$ of the $u/d$ hadronic vacuum polarization contribution with an uncertainty which is 1% of that contribution.



قيم البحث

اقرأ أيضاً

81 - T. Blum , P.A. Boyle , V. Gulpers 2018
We present a first-principles lattice QCD+QED calculation at physical pion mass of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total contribution of up, down, strange, and charm quarks includ ing QED and strong isospin breaking effects is found to be $a_mu^{rm HVP~LO}=715.4(16.3)(9.2) times 10^{-10}$, where the first error is statistical and the second is systematic. By supplementing lattice data for very short and long distances with experimental R-ratio data using the compilation of Ref. [1], we significantly improve the precision of our calculation and find $a_mu^{rm HVP~LO} = 692.5(1.4)(0.5)(0.7)(2.1) times 10^{-10}$ with lattice statistical, lattice systematic, R-ratio statistical, and R-ratio systematic errors given separately. This is the currently most precise determination of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. In addition, we present the first lattice calculation of the light-quark QED correction at physical pion mass.
We calculate the contribution to the muon anomalous magnetic moment hadronic vacuum polarization from {the} connected diagrams of up and down quarks, omitting electromagnetism. We employ QCD gauge-field configurations with dynamical $u$, $d$, $s$, an d $c$ quarks and the physical pion mass, and analyze five ensembles with lattice spacings ranging from $a approx 0.06$ to~0.15~fm. The up- and down-quark masses in our simulations have equal masses $m_l$. We obtain, in this world where all pions have the mass of the $pi^0$, $10^{10} a_mu^{ll}({rm conn.}) = 637.8,(8.8)$, in agreement with independent lattice-QCD calculations. We then combine this value with published lattice-QCD results for the connected contributions from strange, charm, and bottom quarks, and an estimate of the uncertainty due to the fact that our calculation does not include strong-isospin breaking, electromagnetism, or contributions from quark-disconnected diagrams. Our final result for the total $mathcal{O}(alpha^2)$ hadronic vacuum polarization to the muons anomalous magnetic moment is~$10^{10}a_mu^{rm HVP,LO} = 699(15)_{u,d}(1)_{s,c,b}$, where the errors are from the light-quark and heavy-quark contributions, respectively. Our result agrees with both {it ab-initio} lattice-QCD calculations and phenomenological determinations from experimental $e^+e^-$-scattering data. It is $1.3sigma$ below the no new physics value of the hadronic-vacuum-polarization contribution inferred from combining the BNL E821 measurement of $a_mu$ with theoretical calculations of the other contributions.
We report preliminary results for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment. Several ensembles using 2+1 flavors of Mobius domain-wall fermions, generated by the RBC/UKQCD collaborations, are employed t o take the continuum and infinite volume limits of finite volume lattice QED+QCD. We find $a_mu^{rm HLbL} = (7.41pm6.33)times 10^{-10}$
We compute the leading order hadronic vacuum polarization (LO-HVP) contribution to the anomalous magnetic moment of the muon, $(g_mu-2)$, using lattice QCD. Calculations are performed with four flavors of 4-stout-improved staggered quarks, at physica l quark masses and at six values of the lattice spacing down to 0.064~fm. All strong isospin breaking and electromagnetic effects are accounted for to leading order. The infinite-volume limit is taken thanks to simulations performed in volumes of sizes up to 11~fm. Our result for the LO-HVP contribution to $(g_mu-2)$ has a total uncertainty of 0.8%. Compared to the result of the dispersive approach for this contribution, ours significantly reduces the tension between the standard model prediction for $(g_mu-2)$ and its measurement.
We present a calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, $a_mu^{mathrm hvp}$, in lattice QCD employing dynamical up and down quarks. We focus on controlling the infrared regime of the vacuum pol arization function. To this end we employ several complementary approaches, including Pade fits, time moments and the time-momentum representation. We correct our results for finite-volume effects by combining the Gounaris-Sakurai parameterization of the timelike pion form factor with the Luscher formalism. On a subset of our ensembles we have derived an upper bound on the magnitude of quark-disconnected diagrams and found that they decrease the estimate for $a_mu^{mathrm hvp}$ by at most 2%. Our final result is $a_mu^{mathrm hvp}=(654pm32,{}^{+21}_{-23})cdot 10^{-10}$, where the first error is statistical, and the second denotes the combined systematic uncertainty. Based on our findings we discuss the prospects for determining $a_mu^{mathrm hvp}$ with sub-percent precision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا