ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameterized Tractability of the Maximum-Duo Preservation String Mapping Problem

64   0   0.0 ( 0 )
 نشر من قبل Riccardo Dondi
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate the parameterized complexity of the Maximum-Duo Preservation String Mapping Problem, the complementary of the Minimum Common String Partition Problem. We show that this problem is fixed-parameter tractable when parameterized by the number k of conserved duos, by first giving a parameterized algorithm based on the color-coding technique and then presenting a reduction to a kernel of size O(k^6 ).



قيم البحث

اقرأ أيضاً

We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q>1 and a graph G, the goal is to find a coloring of the edges of G with the maximu m number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q>1, and has been well-studied from the point of view of approximation. Our main focus is the case when q=2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.
We study the online maximum coverage problem on a line, in which, given an online sequence of sub-intervals (which may intersect among each other) of a target large interval and an integer $k$, we aim to select at most $k$ of the sub-intervals such t hat the total covered length of the target interval is maximized. The decision to accept or reject each sub-interval is made immediately and irrevocably (no preemption) right at the release timestamp of the sub-interval. We comprehensively study different settings of this problem regarding both the length of a released sub-interval and the total number of released sub-intervals. We first present lower bounds on the competitive ratio for the settings concerned in this paper, respectively. For the offline problem where the sequence of all the released sub-intervals is known in advance to the decision-maker, we propose a dynamic-programming-based optimal approach as the benchmark. For the online problem, we first propose a single-threshold-based deterministic algorithm SOA by adding a sub-interval if the added length exceeds a certain threshold, achieving competitive ratios close to the lower bounds, respectively. Then, we extend to a double-thresholds-based algorithm DOA, by using the first threshold for exploration and the second threshold (larger than the first one) for exploitation. With the two thresholds solved by our proposed program, we show that DOA improves SOA in the worst-case performance. Moreover, we prove that a deterministic algorithm that accepts sub-intervals by multi non-increasing thresholds cannot outperform even SOA.
Given a graph $G=(V,E)$, two vertices $s,tin V$, and two integers $k,ell$, the Short Secluded Path problem is to find a simple $s$-$t$-path with at most $k$ vertices and $ell$ neighbors. We study the parameterized complexity of the problem with respe ct to four structural graph parameters: the vertex cover number, treewidth, feedback vertex number, and feedback edge number. In particular, we completely settle the question of the existence of problem kernels with size polynomial in these parameters and their combinations with $k$ and $ell$. We also obtain a $2^{O(w)}cdot ell^2cdot n$-time algorithm for graphs of treewidth $w$, which yields subexponential-time algorithms in several graph classes.
A graph is said to be a Konig graph if the size of its maximum matching is equal to the size of its minimum vertex cover. The Konig Edge Deletion problem asks if in a given graph there exists a set of at most k edges whose deletion results in a Konig graph. While the vertex version of the problem (Konig vertex deletion) has been shown to be fixed-parameter tractable more than a decade ago, the fixed-parameter-tractability of the Konig Edge Deletion problem has been open since then, and has been conjectured to be W[1]-hard in several papers. In this paper, we settle the conjecture by proving it W[1]-hard. We prove that a variant of this problem, where we are given a graph G and a maximum matching M and we want a k-sized Konig edge deletion set that is disjoint from M, is fixed-parameter-tractable.
When modeling an application of practical relevance as an instance of a combinatorial problem X, we are often interested not merely in finding one optimal solution for that instance, but in finding a sufficiently diverse collection of good solutions. In this work we initiate a systematic study of diversity from the point of view of fixed-parameter tractability theory. First, we consider an intuitive notion of diversity of a collection of solutions which suits a large variety of combinatorial problems of practical interest. We then present an algorithmic framework which --automatically-- converts a tree-decomposition-based dynamic programming algorithm for a given combinatorial problem X into a dynamic programming algorithm for the diverse version of X. Surprisingly, our algorithm has a polynomial dependence on the diversity parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا