ﻻ يوجد ملخص باللغة العربية
In this paper we investigate the parameterized complexity of the Maximum-Duo Preservation String Mapping Problem, the complementary of the Minimum Common String Partition Problem. We show that this problem is fixed-parameter tractable when parameterized by the number k of conserved duos, by first giving a parameterized algorithm based on the color-coding technique and then presenting a reduction to a kernel of size O(k^6 ).
We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q>1 and a graph G, the goal is to find a coloring of the edges of G with the maximu
We study the online maximum coverage problem on a line, in which, given an online sequence of sub-intervals (which may intersect among each other) of a target large interval and an integer $k$, we aim to select at most $k$ of the sub-intervals such t
Given a graph $G=(V,E)$, two vertices $s,tin V$, and two integers $k,ell$, the Short Secluded Path problem is to find a simple $s$-$t$-path with at most $k$ vertices and $ell$ neighbors. We study the parameterized complexity of the problem with respe
A graph is said to be a Konig graph if the size of its maximum matching is equal to the size of its minimum vertex cover. The Konig Edge Deletion problem asks if in a given graph there exists a set of at most k edges whose deletion results in a Konig
When modeling an application of practical relevance as an instance of a combinatorial problem X, we are often interested not merely in finding one optimal solution for that instance, but in finding a sufficiently diverse collection of good solutions.