ترغب بنشر مسار تعليمي؟ اضغط هنا

The Lyman-continuum photon production efficiency in the high-redshift Universe

60   0   0.0 ( 0 )
 نشر من قبل Stephen Wilkins
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Lyman Continuum photon production efficiency ($xi_{rm ion}$) is a critical ingredient for inferring the number of photons available to reionise the intergalactic medium. To estimate the theoretical production efficiency in the high-redshift Universe we couple the BlueTides cosmological hydrodynamical simulation with a range of stellar population synthesis models. We find Lyman Continuum photon production efficiencies of $log_{10}(xi_{rm ion}/{rm erg^{-1}, Hz})approx 25.1-25.5$ depending on the choice of stellar population synthesis model. These results are broadly consistent with recent observational constraints at high-redshift though favour a model incorporating the effects of binary evolution


قيم البحث

اقرأ أيضاً

186 - D. Schaerer 2016
We have recently discovered five Lyman continuum leaking galaxies at z~0.3, selected for their compactness, intense star-formation, and high [OIII]/[OII] ratio (Izotov et al. 2016ab). Here we derive their ionizing photon production efficiency, a fund amental quantity for inferring the number of photons available to reionize the Universe, for the first time for galaxies with confirmed strong Lyman continuum escape (fesc~6-13%). We find an ionizing photon production per unit UV luminosity, which is a factor 2-6 times higher than the canonical value when reported to their observed UV luminosity. After correction for extinction this value is close to the canonical value. The properties of our five Lyman continuum leakers are found to be very similar to those of the confirmed z=3.218 leaker Ion2 from de Barros et al. (2016) and very similar to those of typical star-forming galaxies at z>~6. Our results suggest that UV bright galaxies at high-z such as Lyman break galaxies can be Lyman continuum leakers and that their contribution to cosmic reionization may be underestimated.
We present the first measurements of the Lyman-continuum photon production efficiency $xi_{textrm{ion,0}}$ at $zsim4$-5 for galaxies fainter than 0.2 $L^*$ ($-$19 mag). $xi_{textrm{ion,0}}$ quantifies the production rate of ionizing photons with resp ect to the UV luminosity density assuming a fiducial escape fraction of zero. Extending previous measurements of $xi_{textrm{ion,0}}$ to the faint population is important, as ultra-faint galaxies are expected to contribute the bulk of the ionizing emissivity. We probe $xi_{textrm{ion,0}}$ to such faint magnitudes by taking advantage of 200-hour depth Spitzer/IRAC observations from the GREATS program and $approx$300 3<$z$<6 galaxies with spectroscopic redshifts from the MUSE GTO Deep + Wide programs. Stacked IRAC [3.6]$-$[4.5] colors are derived and used to infer the H$alpha$ rest-frame equivalent widths, which range from 403r{A} to 2818r{A}. The derived $xi_{textrm{ion,0}}$ is $log_{10}(xi_{textrm{ion,0}} / textrm{Hz erg}^{-1}) = 25.36 pm 0.08$ over $-$20.5 < M$_{textrm{UV}}$ < $-$17.5, similar to those derived for brighter galaxy samples at the same redshift and therefore suggesting that $xi_{textrm{ion}}$ shows no strong dependence on $M_{UV}$. The $xi_{textrm{ion,0}}$ values found in our sample imply that the Lyman-continuum escape fraction for $M_{textrm{UV}} approx -19$ star-forming galaxies cannot exceed $approx$8-20% in the reionization era.
We present semi-analytical models of high redshift Lyman-{alpha} emitters (LAEs) in order to constrain the star formation efficiency in those galaxies. Our supernova feedback induced star formation model along with Sheth-Tormman halo mass function co rrectly reproduces the shape, amplitude and the redshift evolution of UV and Lyman-{alpha} luminosity functions of LAEs in the redshift range z = 2 to 7.3. We show that the fraction of Lyman-{alpha} emitting galaxies increases with increasing redshifts reaching to unity just after the reionisation. However, we show that star formation efficiency in those LAEs does not show any redshift evolution within the uncertainty in available observations. This would have significant repercussion on the reionisation of the intergalactic medium.
111 - Y. I. Izotov 2016
Following our first detection reported in Izotov et al. (2016), we present the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Teles cope (HST). These galaxies, at redshifts of z~0.3, are characterized by high emission-line flux ratios [OIII]5007/[OII]3727 > 5. The escape fractions of the LyC radiation fesc(LyC) in these galaxies are in the range of ~6%-13%, the highest values found so far in low-redshift star-forming galaxies. Narrow double-peaked Lyalpha emission lines are detected in the spectra of all four galaxies, compatible with predictions for Lyman continuum leakers. We find escape fractions of Lyalpha, fesc(Lyalpha) ~20%-40%, among the highest known for Lyalpha emitters (LAEs). Surface brightness profiles produced from the COS acquisition images reveal bright star-forming regions in the center and exponential discs in the outskirts with disc scale lengths alpha in the range ~0.6-1.4 kpc. Our galaxies are characterized by low metallicity, ~1/8-1/5 solar, low stellar mass ~(0.2 - 4)e9 Msun, high star formation rates SFR~14-36 Msun/yr, and high SFR densities Sigma~2-35 Msun/yr/kpc^2. These properties are comparable to those of high-redshift star-forming galaxies. Finally, our observations, combined with our first detection reported in Izotov et al. (2016), reveal that a selection for compact star-forming galaxies showing high [OIII]5007/[OII]3727 ratios appears to pick up very efficiently sources with escaping Lyman continuum radiation: all five of our selected galaxies are LyC leakers.
Hydrogen Lyman-$alpha$ (Ly$alpha$) emission has been one of the major observational probes for the high redshift universe, since the first discoveries of high-$z$ Ly$alpha$ emitting galaxies in the late 1990s. Due to the strong Ly$alpha$ emission ori ginated by resonant scattering and recombination of the most-abundant element, Ly$alpha$ observations witness not only HII regions of star formation and AGN but also diffuse HI gas in the circum-galactic medium (CGM) and the inter-galactic medium (IGM). Here we review Ly$alpha$ sources, and present theoretical interpretations reached to date. We conclude that: 1) A typical Ly$alpha$ emitter (LAE) at $zgtrsim 2$ with a $L^*$ Ly$alpha$ luminosity is a high-$z$ counterpart of a local dwarf galaxy, a compact metal-poor star-forming galaxy (SFG) with an approximate stellar (halo) mass and star-formation rate of $10^{8-9} M_odot$ ($10^{10-11} M_odot$) and $1-10 M_odot$ yr$^{-1}$, respectively; 2) High-$z$ SFGs ubiquitously have a diffuse Ly$alpha$ emitting halo in the CGM extending to the halo virial radius and beyond; 3) Remaining neutral hydrogen at the epoch of reionization makes a strong dimming of Ly$alpha$ emission for galaxies at $z>6$ that suggest the late reionization history. The next generation large telescope projects will combine Ly$alpha$ emission data with HI Ly$alpha$ absorptions and 21cm radio data that map out the majority of hydrogen (HI+HII) gas, uncovering the exchanges of i) matter by outflow/inflow and ii) radiation, relevant to cosmic reionization, between galaxies and the CGM/IGM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا