ﻻ يوجد ملخص باللغة العربية
The Josephson effect in ballistic point contacts between single-band and multi-band superconductors was investigated. It was found that in the case of Josephson junctions formed by a single-band and an $s_pm$-wave two-band superconductor as well as by a single-band and a three-band superconductor the junctions become frustrated, demonstrating the $phi$-contact properties. Depending on the ground state of a three-band superconductor with broken time-reversal symmetry (BTRS), the Josephson junction can have from one to three energy minima, some of which can be locally stable. We also study the behavior of a dc SQUID based on the Josephson junctions between single-band and multi-band superconductors. Some features on the dependences of the critical current and the total magnetic flux on the applied flux of a dc SQUID based on the Josephson point contacts between a single-band superconductor and an $s_pm$-wave superconductor, three-band superconductor with BTRS and three-band superconductor without BTRS as compared to the conventional dc SQUIDs based on single-band superconductors were found. The results can be used as an experimental tool to detect the existence of multi-band structure and BTRS.
The microscopic theory of Josephson effect in point contacts between two-band superconductors is developed. The general expression for the Josephson current, which is valid for arbitrary temperatures, is obtained. We considered the dirty superconduct
We developed microscopic theory of Josephson effect in point contacts between dirty two-band superconductors. The general expression for the Josephson current, which is valid for arbitrary temperatures, is obtained. This expression was used for calcu
Within the formalism of Usadel equations the Josephson effect in dirty point contacts between single-band and three-band superconductors is investigated. The general expression for the Josephson current, which is valid for arbitrary temperatures, is
In the ballistic regime, the transport across a normal metal (N)/superconductor (S) point-contact is dominated by a quantum process called Andreev reflection. Andreev reflection causes an enhancement of the conductance below the superconducting energ
We calculate the phase, the temperature and the junction length dependence of the supercurrent for ballistic graphene Josephson-junctions. For low temperatures we find non-sinusoidal dependence of the supercurrent on the superconductor phase differen