ﻻ يوجد ملخص باللغة العربية
The spectrum of relic gravitational wave (RGW) contains high-frequency divergences, which should be removed. We present a systematic study of the issue, based on the exact RGW solution that covers the five stages, from inflation to the acceleration, each being a power law expansion. We show that the present RGW consists of vacuum dominating at $f>10^{11}$Hz and graviton dominating at $f<10^{11}$Hz, respectively. The gravitons are produced by the four cosmic transitions, mostly by the inflation-reheating one. We perform adiabatic regularization to remove vacuum divergences in three schemes: at present, at the end of inflation, and at horizon-exit, to the 2-nd adiabatic order for the spectrum, and the 4-th order for energy density and pressure. In the first scheme a cutoff is needed to remove graviton divergences. We find that all three schemes yield the spectra of a similar profile, and the primordial spectrum defined far outside horizon during inflation is practically unaffected. We also regularize the gauge-invariant perturbed inflaton and the scalar curvature perturbation by the last two schemes, and find that the scalar spectra, the tensor-to-scalar ratio, and the consistency relation remain unchanged.
It is well known that the inflationary scenario often displays different sets of degeneracies in its predictions for CMB observables. These degeneracies usually arise either because multiple inflationary models predict similar values for the scalar s
We compute the spectrum of relic gravitons in a model of string cosmology. In the low- and in the high-frequency limits we reproduce known results. The full spectrum, however, also displays a series of oscillations which could give a characteristic s
The direct detection of gravitational waves (GWs) is an invaluable new tool to probe gravity and the nature of cosmic acceleration. A large class of scalar-tensor theories predict that GWs propagate with velocity different than the speed of light, a
We investigate the second-order gravitational scalar perturbations for a barotropic fluid. We derive the effective energy-momentum tensor described by the quadratic terms of the gravitational and the matter perturbations. We show that the second-orde
The detection of gravitational waves (GWs) propagating through cosmic structures can provide invaluable information on the geometry and content of our Universe, as well as on the fundamental theory of gravity. In order to test possible departures fro