ﻻ يوجد ملخص باللغة العربية
We obtain total galaxy X-ray luminosities, $L_X$, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the $pm1sigma$ scatter of the Mineo et al. (2012) $L_X$ - star formation rate (SFR) correlation or have higher $L_X$ than predicted by this correlation for their SFR. We discuss how these excesses may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. (2011) $L_X$ - stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme $L_X$ values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high $L_X$ values can be observed due to strong XRB variability.
Chandras high angular resolution can resolve emission from stellar X-ray binaries out of the diffuse X-ray emission from gaseous atmospheres within elliptical galaxies. Variations in the X-ray binary populations (per unit galaxian optical luminosity)
We present the results of a search for galaxy clusters and groups in the $sim2$ square degree of the COSMOS field using all available X-ray observations from the XMM-Newton and Chandra observatories. We reach an X-ray flux limit of $3times10^{-16};er
We study the coherence of the near-infrared and X-ray background fluctuations and the X-ray spectral properties of the sources producing it. We use data from multiple Spitzer and Chandra surveys, including the UDS/SXDF surveys, the Hubble Deep Field
We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candid
We propose a physically motivated and self-consistent prescription for the modeling of transient neutron star (NS) low-mass X-ray binary (LMXB) properties, such as duty cycle (DC), outburst duration and recurrence time. We apply this prescription to