ترغب بنشر مسار تعليمي؟ اضغط هنا

Slippage and boundary layer probed in an almost-ideal gas by a nano-mechanical oscillator

63   0   0.0 ( 0 )
 نشر من قبل Eddy Collin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the interaction between $^4$He gas at 4.2$~$K and a high-quality nano-electro-mechanical string device for its first 3 symmetric modes (resonating at 2.2$~$MHz, 6.7$~$MHz and 11$~$MHz with quality factor $Q > 0.1$ million) over almost 6 orders of magnitude in pressure. This fluid can be viewed as the best experimental implementation of an almost-ideal monoatomic and inert gas which properties are tabulated. The experiment ranges from high pressure where the flow is of laminar Stokes-type presenting slippage, down to very low pressures where the flow is molecular. In the molecular regime, when the mean-free-path is of the order of the distance between the suspended nano-mechanical probe and the bottom of the trench we resolve for the first time the signature of the boundary (Knudsen) layer onto the measured dissipation. Our results are discussed in the framework of the most recent theories investigating boundary effects in fluids (both analytic approaches and Monte-Carlo DSMC simulations).



قيم البحث

اقرأ أيضاً

We investigate the mechanical properties of a doubly-clamped, double-layer nanobeam embedded into an electromechanical system. The nanobeam consists of a highly pre-stressed silicon nitride and a superconducting niobium layer. By measuring the mechan ical displacement spectral density both in the linear and the nonlinear Duffing regime, we determine the pre-stress and the effective Youngs modulus of the nanobeam. An analytical double-layer model quantitatively corroborates the measured values. This suggests that this model can be used to design mechanical multilayer systems for electro- and optomechanical devices, including materials controllable by external parameters such as piezoelectric, magnetrostrictive, or in more general multiferroic materials.
Spin torque and spin Hall effect nanooscillators generate high intensity spin wave auto oscillations on the nanoscale enabling novel microwave applications in spintronics, magnonics, and neuromorphic computing. For their operation, these devices requ ire externally generated spin currents either from an additional ferromagnetic layer or a material with a high spin Hall angle. Here we demonstrate highly coherent field and current tunable microwave signals from nanoconstrictions in single 15 and 20 nm thick permalloy layers. Using a combination of spin torque ferromagnetic resonance measurements, scanning microBrillouin light scattering microscopy, and micromagnetic simulations, we identify the autooscillations as emanating from a localized edge mode of the nanoconstriction driven by spin orbit torques. Our results pave the way for greatly simplified designs of auto oscillating nanomagnetic systems only requiring a single ferromagnetic layer.
Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in $mathrm{Y_{3}Fe_{5}O_{12}/Pt}$ bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the $mathrm{Y_{3}Fe_{5}O_{12}}$ layer. This leads to excitation of auto-oscillations of the $mathrm{Y_{3}Fe_{5}O_{12}}$ magnetization and generation of coherent microwave radiation. Our work paves the way towards spin caloritronic devices for microwave and magnonic applications.
We show how the interference between spatially separated states of the center of mass (COM) of a mesoscopic harmonic oscillator can be evidenced by coupling it to a spin and performing solely spin manipulations and measurements (Ramsey Interferometry ). We propose to use an optically levitated diamond bead containing an NV center spin. The nano-scale size of the bead makes the motional decoherence due to levitation negligible. The form of the spin-motion coupling ensures that the scheme works for thermal states so that moderate feedback cooling suffices. No separate control or observation of the COM state is required and thereby one dispenses with cavities, spatially resolved detection and low mass-dispersion ensembles. The controllable relative phase in the Ramsey interferometry stems from a gravitational potential difference so that it uniquely evidences coherence between states which involve the whole nano-crystal being in spatially distinct locations.
115 - M. Defoort 2011
We report on experiments performed on a cantilever-based tri-port nano-electro-mechanical (NEMS) device. Two ports are used for actuation and detection through the magnetomotive scheme, while the third port is a capacitively coupled gate electrode. B y applying a low frequency voltage signal on the gate, we demonstrate mixing in the mechanical response of the device, even for {it low magnetomotive drives, without resorting to conduction measurements through the NEMS}. The technique can thus be used in particular in the linear regime, as an alternative to nonlinear mixing, for normal conducting devices. An analytic theory is presented reproducing the data without free parameters
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا