ﻻ يوجد ملخص باللغة العربية
We derive core-level spectra for doped free-standing bilayer graphene. Numerical results are presented for all nine combinations of the doping concentrations $10^{12}rm{cm}^{-2}$, $10^{13}rm{cm}^{-2}$, and $10^{14}rm{cm}^{-2}$ in the two graphene sheets and we compare the results to the reference spectra for monolayer graphene. We furthermore discuss the spectrum of single-particle inter-band and intra-band excitations in the $omega q$-plane, and show how the dispersion curves of the collective modes are modified in the bilayer system.
We calculate core-level spectra for pristine and doped free-standing graphene sheets. Instructions for how to perform the calculations are given in detail. Although pristine graphene is not metallic the core-level spectrum presents low-energy tailing
The low-frequency magneto-optical absorption spectra of bilayer Bernal graphene are studied within the tight-binding model and gradient approximation. The interlayer interactions strongly affect the electronic properties of the Landau levels (LLs), a
Berry phase plays an important role in determining many physical properties of quantum systems. However, a Berry phase altering energy spectrum of a quantum system is comparatively rare. Here, we report an unusual tunable valley polarized energy spec
We report the first experimental study of the quantum interference correction to the conductivity of bilayer graphene. Low-field, positive magnetoconductivity due to the weak localisation effect is investigated at different carrier densities, includi
Using terahertz time-domain spectroscopy, the real part of optical conductivity [$sigma_{1}(omega)$] of twisted bilayer graphene was obtained at different temperatures (10 -- 300 K) in the frequency range 0.3 -- 3 THz. On top of a Drude-like response