ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

72   0   0.0 ( 0 )
 نشر من قبل Marina Litinskaya
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments with Rb atoms excited on the D2-line.


قيم البحث

اقرأ أيضاً

We study the photonic interactions between two distant atoms which are coupled by an optical element (a lens or an optical fiber) focussing part of their emitted radiation onto each other. Two regimes are distinguished depending on the ratio between the radiative lifetime of the atomic excited state and the propagation time of a photon between the two atoms. In the two regimes, well below saturation the dynamics exhibit either typical features of a bad resonator, where the atoms act as the mirrors, or typical characteristics of dipole-dipole interaction. We study the coherence properties of the emitted light and show that it carries signatures of the multiple scattering processes between the atoms. The model predictions are compared with the experimental results in J. Eschner {it et al.}, Nature {bf 413}, 495 (2001).
In this work we experimentally demonstrate a photon-pair source with correlations in the frequency and polarization degrees of freedom. We base our source on the spontaneous four-wave mixing (SFWM) process in a photonic crystal fiber. We show theoret ically that the two-photon state is the coherent superposition of up to six distinct SFWM processes, each corresponding to a distinct combination of polarizations for the four waves involved and giving rise to an energy-conserving pair of peaks. Our experimental measurements, both in terms of single and coincidence counts, confirm the presence of these pairs of peaks, while we also present related numerical simulations with excellent experiment-theory agreement. We explicitly show how the pump frequency and polarization may be used to effectively control the signal-idler photon-pair properties, defining which of the six processes can participate in the overall two-photon state and at which optical frequencies. We analyze the signal-idler correlations in frequency and polarization, and in terms of fiber characterization, we input the SFWM-peak experimental data into a genetic algorithm which successfully predicts the values of the parameters that characterize the fiber cross section, as well as predict the particular SFWM process associated with a given pair of peaks. We believe our work will help advance the exploitation of photon-pair correlations in the frequency and polarization degrees of freedom.
The realization of a coherent interface between distant charge or spin qubits in semiconductor quantum dots is an open challenge for quantum information processing. Here we demonstrate both resonant and non-resonant photon-mediated coherent interacti ons between double quantum dot charge qubits separated by several tens of micrometers. We present clear spectroscopic evidence of the collective enhancement of the resonant coupling of two qubits. With both qubits detuned from the resonator we observe exchange coupling between the qubits mediated by virtual photons. In both instances pronounced bright and dark states governed by the symmetry of the qubit-field interaction are found. Our observations are in excellent quantitative agreement with master-equation simulations. The extracted two-qubit coupling strengths significantly exceed the linewidths of the combined resonator-qubit system. This indicates that this approach is viable for creating photon-mediated two-qubit gates in quantum dot based systems.
Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers strongly coupled to a diamond nanophotonic cavity. When the optical transitions of the two color centers are tuned into resonance, the coupling to the common cavity mode results in a coherent interaction between them, leading to spectrally-resolved superradiant and subradiant states. We use the electronic spin degrees of freedom of the SiV centers to control these optically-mediated interactions. Our experiments pave the way for implementation of cavity-mediated quantum gates between spin qubits and for realization of scalable quantum network nodes.
We report direct observations of photon-mediated spin-exchange interactions in an atomic ensemble. Interactions extending over a distance of 500 microns are generated within a cloud of cold rubidium atoms coupled to a single mode of light in an optic al resonator. We characterize the system via quench dynamics and imaging of the local magnetization, verifying the coherence of the interactions and demonstrating optical control of their strength and sign. Furthermore, by initializing the spin-1 system in the mF = 0 Zeeman state, we observe correlated pair creation in the mF = +/- 1 states, a process analogous to spontaneous parametric down-conversion and to spin mixing in Bose-Einstein condensates. Our work opens new opportunities in quantum simulation with long-range interactions and in entanglement-enhanced metrology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا