ﻻ يوجد ملخص باللغة العربية
GaAs/Fe$_{3}$Si core/shell nanowire structures were fabricated by molecular-beam epitaxy on oxidized Si(111) substrates and investigated by synchrotron x-ray diffraction. The surfaces of the Fe$_3$Si shells exhibit nanofacets. These facets consist of well pronounced Fe$_3$Si{111} planes. Density functional theory reveals that the Si-terminated Fe$_3$Si{111} surface has the lowest energy in agreement with the experimental findings. We can analyze the x-ray diffuse scattering and diffraction of the ensemble of nanowires avoiding the signal of the substrate and poly-crystalline films located between the wires. Fe$_3$Si nanofacets cause streaks in the x-ray reciprocal space map rotated by an azimuthal angle of 30{deg} compared with those of bare GaAs nanowires. In the corresponding TEM micrograph the facets are revealed only if the incident electron beam is oriented along [1$overline{1}$0] in accordance with the x-ray results. Additional maxima in the x-ray scans indicate the onset of chemical reactions between Fe$_{3}$Si shells and GaAs cores occurring at increased growth temperatures.
GaAs nanowires and GaAs-Fe3Si core-shell nanowire structures were grown by molecular-beam epitaxy on oxidized Si(111) substrates and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Ga droplets were formed on the o
We study the optical properties of a single core-shell GaAs-AlGaAs nanowire (grown by VLS method) using the technique of micro-photoluminescence and spatially-resolved photoluminescence imaging. We observe large linear polarization anisotropy in emission and excitation of nanowires.
GaAs nanowires and GaAs/Fe3Si core/shell nanowire structures were grown by molecular-beam epitaxy on oxidized Si(111) substrates and characterized by transmission electron microscopy. The surfaces of the original GaAs NWs are completely covered by ma
General expressions for the electron- and hole-acoustical-phonon deformation potential Hamiltonian (H_{E-DP}) are derived for the case of Ge/Si and Si/Ge core/shell nanowire structures (NWs) with circular cross section. Based on the short-range elast
We study the dynamics of excitons in GaAs/(Al,Ga)As core-shell nanowires by continuous-wave and time-resolved photoluminescence and photoluminescence excitation spectroscopy. Strong Al segregation in the shell of the nanowires leads to the formation