ترغب بنشر مسار تعليمي؟ اضغط هنا

Bound-free pair production in heavy-ion collisions at high energies

109   0   0.0 ( 0 )
 نشر من قبل Rainer Schicker M
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف R. Schicker




اسأل ChatGPT حول البحث

The electromagnetic process of bound-free electron pair production in heavy-ion collisions at high energies is reviewed. The importance of this process for producing secondary beams is outlined. Single free electron pair production is presented, and the bound-free pair production process is introduced. Double pair production is discussed, and an estimate of the bound-free pair constrained photon-photon luminosity is given.



قيم البحث

اقرأ أيضاً

220 - J. Cleymans , S. Kabana , I. Kraus 2011
One of the striking features of particle production at high beam energies is the near equal abundance of matter and antimatter in the central rapidity region. In this paper we study how this symmetry is reached as the beam energy is increased. In par ticular, we quantify explicitly the energy dependence of the approach to matter/antimatter symmetry in proton-proton and in heavy-ion collisions. Expectations are presented also for the production of more complex forms of antimatter like antihypernuclei.
This paper investigates the electromagnetic production of lepton pairs with low transverse momentum in relativistic heavy ion collisions. We estimate the initial photons transverse momentum contributions by employing models where the average transver se momentum squared of the incoming photon can be calculated in the equivalent photon approximation. We further derive an all order QED resummation for the soft photon radiation, which gives an excellent description of the ATLAS data in ultra-peripheral collisions at the LHC. For peripheral and central collisions, additional $p_T$-broadening effects from multiple interaction with the medium and the magnetic field contributions from the quark-gluon plasma are also discussed.
116 - A. Foerster 2003
The production and the propagation of K+ and of K- mesons in heavy-ion collisions at beam energies of 1 to 2 AGeV have systematically been investigated with the Kaon Spectrometer KaoS at the SIS at the GSI. The ratio of the K+ production excitation f unction for Au+Au and for C+C reactions increases with decreasing beam energy, which is expected for a soft nuclear equation-of-state. At 1.5 AGeV a comprehensive study of the K+ and of the K- emission as a function of the size of the collision system, of the collision centrality, of the kaon energy, and of the polar emission angle has been performed. The K-/K+ ratio is found to be nearly constant as a function of the collision centrality. The spectral slopes and the polar emission patterns are different for K- and for K+. These observations indicate that K+ mesons decouple earlier from the reaction zone than K- mesons.
Quarkonium production in high-energy proton (deuteron)-nucleus collisions is investigated in the color glass condensate framework. We employ the color evaporation model assuming that the quark pair produced from dense small-x gluons in the nuclear ta rget bounds into a quarkonium outside the target. The unintegrated gluon distribution at small Bjorken x in the nuclear target is treated with the Balitsky-Kovchegov equation with running coupling corrections. For the gluons in the proton, we examine two possible descriptions, unintegrated gluon distribution and ordinary collinear gluon distribution. We present the transverse momentum spectrum and nuclear modification factor for J/psi production at RHIC and LHC energies, and those for Upsilon(1S) at LHC energy, and discuss the nuclear modification factor and the momentum broadening by changing the rapidity and the initial saturation scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا