ترغب بنشر مسار تعليمي؟ اضغط هنا

The shifted proper orthogonal decomposition: A mode decomposition for multiple transport phenomena

67   0   0.0 ( 0 )
 نشر من قبل Julius Reiss
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Transport-dominated phenomena provide a challenge for common mode-based model reduction approaches. We present a model reduction method, which is suited for these kind of systems. It extends the proper orthogonal decomposition (POD) by introducing time-dependent shifts of the snapshot matrix. The approach, called shifted proper orthogonal decomposition (sPOD), features a determination of the {it multiple} transport velocities and a separation of these. One- and two-dimensional test examples reveal the good performance of the sPOD for transport-dominated phenomena and its superiority in comparison to the POD.



قيم البحث

اقرأ أيضاً

122 - Karim Halaseh , Tommi Muller , 2020
In this paper we study the problem of recovering a tensor network decomposition of a given tensor $mathcal{T}$ in which the tensors at the vertices of the network are orthogonally decomposable. Specifically, we consider tensor networks in the form of tensor trains (aka matrix product states). When the tensor train has length 2, and the orthogonally decomposable tensors at the two vertices of the network are symmetric, we show how to recover the decomposition by considering random linear combinations of slices. Furthermore, if the tensors at the vertices are symmetric but not orthogonally decomposable, we show that a whitening procedure can transform the problem into an orthogonal one, thereby yielding a solution for the decomposition of the tensor. When the tensor network has length 3 or more and the tensors at the vertices are symmetric and orthogonally decomposable, we provide an algorithm for recovering them subject to some rank conditions. Finally, in the case of tensor trains of length two in which the tensors at the vertices are orthogonally decomposable but not necessarily symmetric, we show that the decomposition problem reduces to the problem of a novel matrix decomposition, that of an orthogonal matrix multiplied by diagonal matrices on either side. We provide two solutions for the full-rank tensor case using Sinkhorns theorem and Procrustes algorithm, respectively, and show that the Procrustes-based solution can be generalized to any rank case. We conclude with a multitude of open problems in linear and multilinear algebra that arose in our study.
253 - Tamara G. Kolda 2015
We consider the problem of decomposing a real-valued symmetric tensor as the sum of outer products of real-valued, pairwise orthogonal vectors. Such decompositions do not generally exist, but we show that some symmetric tensor decomposition problems can be converted to orthogonal problems following the whitening procedure proposed by Anandkumar et al. (2012). If an orthogonal decomposition of an $m$-way $n$-dimensional symmetric tensor exists, we propose a novel method to compute it that reduces to an $n times n$ symmetric matrix eigenproblem. We provide numerical results demonstrating the effectiveness of the method.
The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimen sional direct numerical simulations, is limited owing to its computational complexity. Here, we propose a wavelet-based adaptive version of the POD (the wPOD), in order to overcome this limitation. The amount of data to be analyzed is reduced by compressing them using biorthogonal wavelets, yielding a sparse representation while conveniently providing control of the compression error. Numerical analysis shows how the distinct error contributions of wavelet compression and POD truncation can be balanced under certain assumptions, allowing us to efficiently process high-resolution data from three-dimensional simulations of flow problems. Using a synthetic academic test case, we compare our algorithm with the randomized singular value decomposition. Furthermore, we demonstrate the ability of our method analyzing data of a 2D wake flow and a 3D flow generated by a flapping insect computed with direct numerical simulation.
An extension of Proper Orthogonal Decomposition is applied to the wall layer of a turbulent channel flow (Re {tau} = 590), so that empirical eigenfunctions are defined in both space and time. Due to the statistical symmetries of the flow, the igenfun ctions are associated with individual wavenumbers and frequencies. Self-similarity of the dominant eigenfunctions, consistent with wall-attached structures transferring energy into the core region, is established. The most energetic modes are characterized by a fundamental time scale in the range 200-300 viscous wall units. The full spatio-temporal decomposition provides a natural measure of the convection velocity of structures, with a characteristic value of 12 u {tau} in the wall layer. Finally, we show that the energy budget can be split into specific contributions for each mode, which provides a closed-form expression for nonlinear effects.
In this paper, we propose a computationally efficient iterative algorithm for proper orthogonal decomposition (POD) using random sampling based techniques. In this algorithm, additional rows and columns are sampled and a merging technique is used to update the dominant POD modes in each iteration. We derive bounds for the spectral norm of the error introduced by a series of merging operations. We use an existing theorem to get an approximate measure of the quality of subspaces obtained on convergence of the iteration. Results on various datasets indicate that the POD modes and/or the subspaces are approximated with excellent accuracy with a significant runtime improvement over computing the truncated SVD. We also propose a method to compute the POD modes of large matrices that do not fit in the RAM using this iterative sampling and merging algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا