ترغب بنشر مسار تعليمي؟ اضغط هنا

ASIST: Automatic Semantically Invariant Scene Transformation

65   0   0.0 ( 0 )
 نشر من قبل Or Litany
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ASIST, a technique for transforming point clouds by replacing objects with their semantically equivalent counterparts. Transformations of this kind have applications in virtual reality, repair of fused scans, and robotics. ASIST is based on a unified formulation of semantic labeling and object replacement; both result from minimizing a single objective. We present numerical tools for the efficient solution of this optimization problem. The method is experimentally assessed on new datasets of both synthetic and real point clouds, and is additionally compared to two recent works on object replacement on data from the corresponding papers.



قيم البحث

اقرأ أيضاً

73 - Wenhao Ding , Bo Li , Kim Ji Eun 2021
Deep Generative Models (DGMs) are known for their superior capability in generating realistic data. Extending purely data-driven approaches, recent specialized DGMs may satisfy additional controllable requirements such as embedding a traffic sign in a driving scene, by manipulating patterns textit{implicitly} in the neuron or feature level. In this paper, we introduce a novel method to incorporate domain knowledge textit{explicitly} in the generation process to achieve semantically controllable scene generation. We categorize our knowledge into two types to be consistent with the composition of natural scenes, where the first type represents the property of objects and the second type represents the relationship among objects. We then propose a tree-structured generative model to learn complex scene representation, whose nodes and edges are naturally corresponding to the two types of knowledge respectively. Knowledge can be explicitly integrated to enable semantically controllable scene generation by imposing semantic rules on properties of nodes and edges in the tree structure. We construct a synthetic example to illustrate the controllability and explainability of our method in a clean setting. We further extend the synthetic example to realistic autonomous vehicle driving environments and conduct extensive experiments to show that our method efficiently identifies adversarial traffic scenes against different state-of-the-art 3D point cloud segmentation models satisfying the traffic rules specified as the explicit knowledge.
The vulnerability of neural networks under adversarial attacks has raised serious concerns and motivated extensive research. It has been shown that both neural networks and adversarial attacks against them can be sensitive to input transformations su ch as linear translation and rotation, and that human vision, which is robust against adversarial attacks, is invariant to natural input transformations. Based on these, this paper tests the hypothesis that model robustness can be further improved when it is adversarially trained against transformed attacks and transformation-invariant attacks. Experiments on MNIST, CIFAR-10, and restricted ImageNet show that while transformations of attacks alone do not affect robustness, transformation-invariant attacks can improve model robustness by 2.5% on MNIST, 3.7% on CIFAR-10, and 1.1% on restricted ImageNet. We discuss the intuition behind this phenomenon.
Image captioning has demonstrated models that are capable of generating plausible text given input images or videos. Further, recent work in image generation has shown significant improvements in image quality when text is used as a prior. Our work t ies these concepts together by creating an architecture that can enable bidirectional generation of images and text. We call this network Multi-Modal Vector Representation (MMVR). Along with MMVR, we propose two improvements to the text conditioned image generation. Firstly, a n-gram metric based cost function is introduced that generalizes the caption with respect to the image. Secondly, multiple semantically similar sentences are shown to help in generating better images. Qualitative and quantitative evaluations demonstrate that MMVR improves upon existing text conditioned image generation results by over 20%, while integrating visual and text modalities.
While great progress has been made recently in automatic image manipulation, it has been limited to object centric images like faces or structured scene datasets. In this work, we take a step towards general scene-level image editing by developing an automatic interaction-free object removal model. Our model learns to find and remove objects from general scene images using image-level labels and unpaired data in a generative adversarial network (GAN) framework. We achieve this with two key contributions: a two-stage editor architecture consisting of a mask generator and image in-painter that co-operate to remove objects, and a novel GAN based prior for the mask generator that allows us to flexibly incorporate knowledge about object shapes. We experimentally show on two datasets that our method effectively removes a wide variety of objects using weak supervision only
Recently, video scene text detection has received increasing attention due to its comprehensive applications. However, the lack of annotated scene text video datasets has become one of the most important problems, which hinders the development of vid eo scene text detection. The existing scene text video datasets are not large-scale due to the expensive cost caused by manual labeling. In addition, the text instances in these datasets are too clear to be a challenge. To address the above issues, we propose a tracking based semi-automatic labeling strategy for scene text videos in this paper. We get semi-automatic scene text annotation by labeling manually for the first frame and tracking automatically for the subsequent frames, which avoid the huge cost of manual labeling. Moreover, a paired low-quality scene text video dataset named Text-RBL is proposed, consisting of raw videos, blurry videos, and low-resolution videos, labeled by the proposed convenient semi-automatic labeling strategy. Through an averaging operation and bicubic down-sampling operation over the raw videos, we can efficiently obtain blurry videos and low-resolution videos paired with raw videos separately. To verify the effectiveness of Text-RBL, we propose a baseline model combined with the text detector and tracker for video scene text detection. Moreover, a failure detection scheme is designed to alleviate the baseline model drift issue caused by complex scenes. Extensive experiments demonstrate that Text-RBL with paired low-quality videos labeled by the semi-automatic method can significantly improve the performance of the text detector in low-quality scenes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا