ترغب بنشر مسار تعليمي؟ اضغط هنا

Structures and components in galaxy clusters: observations and models

118   0   0.0 ( 0 )
 نشر من قبل J. S. Kaastra
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Clusters of galaxies are the largest gravitationally bounded structures in the Universe dominated by dark matter. We review the observational appearance and physical models of plasma structures in clusters of galaxies. Bubbles of relativistic plasma which are inflated by supermassive black holes of AGNs, cooling and heating of the gas, large scale plasma shocks, cold fronts, non-thermal halos and relics are observed in clusters. These constituents are reflecting both the formation history and the dynamical properties of clusters of galaxies. We discuss X-ray spectroscopy as a tool to study the metal enrichment in clusters and fine spectroscopy of Fe X-ray lines as a powerful diagnostics of both the turbulent plasma motions and the energetics of the non-thermal electron populations. The knowledge of the complex dynamical and feedback processes is necessary to understand the energy and matter balance as well as to constrain the role of the non-thermal components of clusters.



قيم البحث

اقرأ أيضاً

Diffuse cluster radio sources, in the form of radio halos and relics, reveal the presence of cosmic rays and magnetic fields in the intracluster medium (ICM). These cosmic rays are thought to be (re-)accelerated through ICM turbulence and shock waves generated by cluster merger events. Here we characterize the presence of diffuse radio emission in known galaxy clusters in the HETDEX Spring Field, covering 424 deg$^2$. For this, we developed a method to extract individual targets from LOFAR observations processed with the LoTSS DDF-pipeline. This procedure enables improved calibration and joint imaging and deconvolution of multiple pointings of selected targets. The calibration strategy can also be used for LOFAR Low-Band Antenna (LBA) and international-baseline observations. The fraction of Planck PSZ2 clusters with any diffuse radio emission apparently associated with the ICM is $73pm17%$. We detect a total of 10 radio halos and 12 candidate halos in the HETDEX Spring Field. Five clusters host radio relics. The fraction of radio halos in Planck PSZ2 clusters is $31pm11%$, and $62pm15%$ when including the candidate radio halos. Based on these numbers, we expect that there will be at least $183 pm 65$ radio halos found in the LoTSS survey in PSZ2 clusters, in agreement with predictions. The integrated flux densities for the radio halos were computed by fitting exponential models to the radio images. From these flux densities, we determine the cluster mass (M$_{500}$) and Compton Y parameter (Y$_{500}$) 150 MHz radio power (P$_{rm{150 MHz}}$) scaling relations for Planck PSZ2-detected radio halos. We find that the slopes of these relations are steeper than those determined from the 1.4 GHz radio powers. However, considering the uncertainties this is not a statistically significant result.
Cold fronts have been observed in a large number of galaxy clusters. Understanding their nature and origin is of primary importance for the investigation of the internal dynamics of clusters. To gain insight on the nature of these features, we carry out a statistical investigation of their occurrence in a sample of galaxy clusters observed with XMM-Newton and we correlate their presence with different cluster properties. We have selected a sample of 45 clusters starting from the B55 flux limited sample by Edge et al. (1990) and performed a systematic search of cold fronts. We find that a large fraction of clusters host at least one cold front. Cold fronts are easily detected in all systems that are manifestly undergoing a merger event in the plane of the sky while the presence of such features in the remaining clusters is related to the presence of a steep entropy gradient, in agreement with theoretical expectations. Assuming that cold fronts in cool core clusters are triggered by minor merger events, we estimate a minimum of 1/3 merging events per halo per Gyr.
185 - J. A. ZuHone 2012
(Abridged) Cold fronts in cluster cool cores should be erased on short timescales by thermal conduction, unless protected by magnetic fields that are draped parallel to the front surfaces, suppressing conduction perpendicular to the fronts. We presen t MHD simulations of cold front formation in the core of a galaxy cluster with anisotropic thermal conduction, exploring a parameter space of conduction strengths parallel and perpendicular to the field lines. Including conduction has a strong effect on the temperature of the core and the cold fronts. Though magnetic field lines are draping parallel to the front surfaces, the temperature jumps across the fronts are nevertheless reduced. The field geometry is such that the cold gas below the front surfaces can be connected to hotter regions outside via field lines along directions perpendicular to the plane of the sloshing motions and along sections of the front which are not perfectly draped. This results in the heating of this gas below the front on a timescale of a Gyr, but the sharpness of the density and temperature jumps may still be preserved. By modifying the density distribution below the front, conduction may indirectly aid in suppressing Kelvin-Helmholtz instabilities. If conduction along the field lines is unsuppressed, we find that the characteristic sharp jumps in X-ray emission seen in observations of clusters do not form. This suggests that the presence of sharp cold fronts in hot clusters could be used to place upper limits on conduction in the {it bulk} of the ICM. Finally, the combination of sloshing and anisotropic thermal conduction can result in a larger flux of heat to the core than either process in isolation. While still not sufficient to prevent a cooling catastrophe in the very central ($r sim$ 5 kpc) regions of the cool core, it reduces significantly the mass of cool gas that accumulates outside those radii.
The X-ray Integral Field Unit (X-IFU) that will be on board the Athena telescope will provide an unprecedented view of the intracluster medium (ICM) kinematics through the observation of gas velocity, $v$, and velocity dispersion, $w$, via centroid-s hift and broadening of emission lines, respectively. The improvement of data quality and quantity requires an assessment of the systematics associated with this new data analysis, namely biases, statistical and systematic errors, and possible correlations between the different measured quantities. We have developed an end-to-end X-IFU simulator that mimics a full X-ray spectral fitting analysis on a set of mock event lists, obtained using SIXTE. We have applied it to three hydrodynamical simulations of a Coma-like cluster that include the injection of turbulence. This allowed us to assess the ability of X-IFU to map five physical quantities in the cluster core: emission measure, temperature, metal abundance, velocity and velocity dispersion. Finally, starting from our measurements maps, we computed the 2D structure function (SF) of emission measure fluctuations, $v$ and $w$ and compared them with those derived directly from the simulations. All quantities match with the input projected values without bias; the systematic errors were below 5%, except for velocity dispersion whose error reaches about 15%. Moreover, all measurements prove to be statistically independent, indicating the robustness of the fitting method. Most importantly, we recover the slope of the SFs in the inertial regime with excellent accuracy, but we observe a systematic excess in the normalization of both SF$_v$ and SF$_w$ ascribed to the simplistic assumption of uniform and (bi-)Gaussian measurement errors. Our work highlights the excellent capabilities of Athena X-IFU in probing the thermodynamic and kinematic properties of the ICM. (abridged)
188 - Fabio Zandanel 2013
The underlying physics of giant and mini radio halos in galaxy clusters is still an open question. We find that mini halos (such as in Perseus and Ophiuchus) can be explained by radio-emitting electrons that are generated in hadronic cosmic ray (CR) interactions with protons of the intracluster medium. By contrast, the hadronic model either fails to explain the extended emission of giant radio halos (as in Coma at low frequencies) or would require a flat CR profile, which can be realized through outward streaming and diffusion of CRs (in Coma and A2163 at 1.4 GHz). We suggest that a second, leptonic component could be responsible for the missing flux in the outer parts of giant halos within a new hybrid scenario and we describe its possible observational consequences. To study the hadronic emission component of the radio halo population statistically, we use a cosmological mock galaxy cluster catalog built from the MultiDark simulation. Because of the properties of CR streaming and the different scalings of the X-ray luminosity (L_X) and the Sunyaev-Zeldovich flux (Y) with gas density, our model can simultaneously reproduce the observed bimodality of radio-loud and radio-quiet clusters at the same L_X as well as the unimodal distribution of radio-halo luminosity versus Y; thereby suggesting a physical solution to this apparent contradiction. We predict radio halo emission down to the mass scale of galaxy groups, which highlights the unique prospects for low-frequency radio surveys (such as the LOFAR Tier 1 survey) to increase the number of detected radio halos by at least an order of magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا