ترغب بنشر مسار تعليمي؟ اضغط هنا

Time dependence of the e^- flux measured by PAMELA during the July 2006 - December 2009 solar minimum

75   0   0.0 ( 0 )
 نشر من قبل Riccardo Munini
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy not accessible from the study of the cosmic-ray nuclear components due to their differing diffusion and energy-loss processes. However, when measured near Earth, the effects of propagation and modulation of galactic cosmic rays in the heliosphere, particularly significant for energies up to at least 30 GeV, must be properly taken into account. In this paper the electron (e^-) spectra measured by PAMELA down to 70 MeV from July 2006 to December 2009 over six-months time intervals are presented. Fluxes are compared with a state-of-the-art three-dimensional model of solar modulation that reproduces the observations remarkably well.



قيم البحث

اقرأ أيضاً

The energy spectra of galactic cosmic rays carry fundamental information regarding their origin and propagation. These spectra, when measured near Earth, are significantly affected by the solar magnetic field. A comprehensive description of the cosmi c radiation must therefore include the transport and modulation of cosmic rays inside the heliosphere. During the end of the last decade the Sun underwent a peculiarly long quiet phase well suited to study modulation processes. In this paper we present proton spectra measured from July 2006 to December 2009 by PAMELA. The large collected statistics of protons allowed the time variation to be followed on a nearly monthly basis down to 400 MV. Data are compared with a state-of-the-art three-dimensional model of solar modulation.
166 - N. Marcelli , M. Boezio , A. Lenni 2020
Precise time-dependent measurements of the Z = 2 component in the cosmic radiation provide crucial information about the propagation of charged particles through the heliosphere. The PAMELA experiment, with its long flight duration (15th June 2006 - 23rd January 2016) and the low energy threshold (80 MeV/n) is an ideal detector for cosmic ray solar modulation studies. In this paper, the helium nuclei spectra measured by the PAMELA instrument from July 2006 to December 2009 over a Carrington rotation time basis are presented. A state-of-the-art three-dimensional model for cosmic-ray propagation inside the heliosphere was used to interpret the time-dependent measured fluxes. Proton-to-helium flux ratio time profiles at various rigidities are also presented in order to study any features which could result from the different masses and local interstellar spectra shapes.
Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) till the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field.
122 - R. Munini , M. Boezio , A. Bruno 2018
New results on the short-term galactic cosmic ray (GCR) intensity variation (Forbush decrease) in December 2006 measured by the PAMELA instrument are presented. Forbush decreases are sudden suppressions of the GCR intensities which are associated wit h the passage of interplanetary transients such as shocks and interplanetary coronal mass ejections (ICMEs). Most of the past measurements of this phenomenon were carried out with ground-based detectors such as neutron monitors or muon telescopes. These techniques allow only the indirect detection of the overall GCR intensity over an integrated energy range. For the first time, thanks to the unique features of the PAMELA magnetic spectrometer, the Forbush decrease commencing on 2006 December 14, following a CME at the Sun on 2006 December 13 was studied in a wide rigidity range (0.4 - 20 GV) and for different species of GCRs detected directly in space. The daily averaged GCR proton intensity was used to investigate the rigidity dependence of the amplitude and the recovery time of the Forbush decrease. Additionally, for the first time, the temporal variations in the helium and electron intensities during a Forbush decrease were studied. Interestingly, the temporal evolutions of the helium and proton intensities during the Forbush decrease were found in good agreement, while the low rigidity electrons (< 2 GV) displayed a faster recovery. This difference in the electron recovery is interpreted as a charge-sign dependence introduced by drift motions experienced by the GCRs during their propagation through the heliosphere.
56 - Dale E. Gary 2019
The solar burst of 2006 December 06 reached a radio flux density of more than 1 million solar flux units (1 sfu = $10^{-22}$ W/m$^2$/Hz), as much as 10 times the previous record, and caused widespread loss of satellite tracking by GPS receivers. The event was well observed by NJITs Owens Valley Solar Array (OVSA). This work concentrates on an accurate determination of the flux density (made difficult due to the receiver systems being driving into non-linearity), and discuss the physical conditions on the Sun that gave rise to this unusual event. At least two other radio outbursts occurred in the same region (on 2006 December 13 and 14) that had significant, but smaller effects on GPS. We discuss the differences among these three events, and consider the implications of these events for the upcoming solar cycle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا