ترغب بنشر مسار تعليمي؟ اضغط هنا

Bond Graph Modelling of Chemoelectrical Energy Transduction

42   0   0.0 ( 0 )
 نشر من قبل Peter Gawthrop
 تاريخ النشر 2015
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Energy-based bond graph modelling of biomolecular systems is extended to include chemoelectrical trans- duction thus enabling integrated thermodynamically-compliant modelling of chemoelectrical systems in general and excitable membranes in particular. Our general approach is illustrated by recreating a well-known model of an excitable membrane. This model is used to investigate the energy consumed during a membrane action potential thus contributing to the current debate on the trade-off between the speed of an action potential event and energy consumption. The influx of Na+ is often taken as a proxy for energy consumption; in contrast, this paper presents an energy based model of action potentials. As the energy based approach avoids the assumptions underlying the proxy approach it can be directly used to compute energy consumption in both healthy and diseased neurons. These results are illustrated by comparing the energy consumption of healthy and degenerative retinal ganglion cells using both simulated and in vitro data.

قيم البحث

اقرأ أيضاً

173 - Han-Yu Jiang , Jun He 2021
Signal transduction is an important and basic mechanism to cell life activities. The stochastic state transition of receptor induces the release of singling molecular, which triggers the state transition of other receptors. It constructs a nonlinear singling network, and leads to robust switchlike properties which are critical to biological function. Network architectures and state transitions of receptor will affect the performance of this biological network. In this work, we perform a study of nonlinear signaling on biological network with multistate by analyzing network dynamics of the Ca$^{2+}$ induced Ca$^{2+}$ release mechanism, where fast and slow processes are involved and the receptor has four conformational states. Three types of networks, Erdos-Renyi network, Watts-Strogatz network and BaraBasi-Albert network, are considered with different parameters. The dynamics of the biological networks exhibit different patterns at different time scales. At short time scale, the second open state is essential to reproduce the quasi-bistable regime, which emerges at a critical strength of connection for all three states involved in the fast processes and disappears at another critical point. The pattern at short time scale is not sensitive to the network architecture. At long time scale, only monostable regime is observed, and difference of network architectures affects the results more seriously. Our finding identifies features of nonlinear signaling networks with multistate that may underlie their biological function.
The Bond Graph approach and the Chemical Reaction Network approach to modelling biomolecular systems developed independently. This paper brings together the two approaches by providing a bond graph interpretation of the chemical reaction network conc ept of complexes. Both closed and open systems are discussed. The method is illustrated using a simple enzyme-catalysed reaction and a trans-membrane transporter.
Systems biology and whole-cell modelling are demanding increasingly comprehensive mathematical models of cellular biochemistry. These models require the development of simplified models of specific processes which capture essential biophysical featur es but without unnecessarily complexity. Recently there has been renewed interest in thermodynamically-based modelling of cellular processes. Here we present an approach to developing of simplified yet thermodynamically consistent (hence physically plausible) models which can readily be incorporated into large scale biochemical descriptions but which do not require full mechanistic detail of the underlying processes. We illustrate the approach through development of a simplified, physically plausible model of the mitochondrial electron transport chain and show that the simplified model behaves like the full system.
A multiscale mathematical model is presented to describe the de novo granulation and the evolution of multispecies granular biofilms within a continuous reactor. The granule is modelled as a spherical free boundary domain with radial symmetry. The eq uation which governs the free boundary is derived from global mass balance considerations and takes into account the growth of sessile biomass and the exchange fluxes with the bulk liquid. Starting from a vanishing initial value, the expansion of the free boundary is initiated by the attachment process, which depends on the microbial species concentrations within the bulk liquid and their specific attachment velocity. Nonlinear hyperbolic PDEs model the growth of the sessile microbial species, while quasi-linear parabolic PDEs govern the dynamics of substrates and invading species within the granular biofilm. Nonlinear ODEs govern the evolution of soluble substrates and planktonic biomass within the bulk liquid. The model is applied to an anaerobic granular-based system and solved numerically to test its qualitative behaviour and explore the main aspects of de novo anaerobic granulation: ecology, biomass distribution, relative abundance, dimensional evolution of the granules and soluble substrates and planktonic biomass dynamics within the reactor. The numerical results confirm that the model accurately describes the ecology and the concentrically-layered structure of anaerobic granules observed experimentally, and is able to predict the effects of some significant factors, such as influent wastewater composition, granulation properties of planktonic biomass, biomass density and hydrodynamic and shear stress conditions, on the process performance.
The assembly of virus capsids from free coat proteins proceeds by a complicated cascade of association and dissociation steps, the great majority of which cannot be directly experimentally observed. This has made capsid assembly a rich field for comp utational models to attempt to fill the gaps in what is experimentally observable. Nonetheless, accurate simulation predictions depend on accurate models and there are substantial obstacles to model inference for such systems. Here, we describe progress in learning parameters for capsid assembly systems, particularly kinetic rate constants of coat-coat interactions, by computationally fitting simulations to experimental data. We previously developed an approach to learn rate parameters of coat-coat interactions by minimizing the deviation between real and simulated light scattering data monitoring bulk capsid assembly in vitro. This is a difficult data-fitting problem, however, because of the high computational cost of simulating assembly trajectories, the stochastic noise inherent to the models, and the limited and noisy data available for fitting. Here we show that a newer classes of methods, based on derivative-free optimization (DFO), can more quickly and precisely learn physical parameters from static light scattering data. We further explore how the advantages of the approaches might be affected by alternative data sources through simulation of a model of time-resolved mass spectrometry data, an alternative technology for monitoring bulk capsid assembly that can be expected to provide much richer data. The results show that advances in both the data and the algorithms can improve model inference, with rich data leading to high-quality fits for all methods, but DFO methods showing substantial advantages over less informative data sources better representative of the current experimental practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا