ﻻ يوجد ملخص باللغة العربية
We consider cycles on a 3-dimensional Shimura varieties attached to a unitary group, defined over extensions of a CM field $E$, which appear in the context of the conjectures of Gan, Gross, and Prasad cite{gan-gross-prasad}. We establish a vertical distribution relation for these cycles over an anticyclotomic extension of $E$, complementing the horizontal distribution relation of cite{jetchev:unitary}, and use this to define a family of norm-compatible cycles over these fields, thus obtaining a universal norm construction similar to the Heegner $Lambda$-module constructed from Heegner points.
We study the local behavior of special cycles on Shimura varieties for $mathbf{U}(2, 1) times mathbf{U}(1, 1)$ in the setting of the Gan-Gross-Prasad conjectures at primes $tau$ of the totally real field of definition of the unitary spaces which are
We determine the behavior of automorphic Green functions along the boundary components of toroidal compactifications of orthogonal Shimura varieties. We use this analysis to define boundary components of special divisors and prove that the generating
Let $F$ be a totally real field in which a fixed prime $p$ is inert, and let $E$ be a CM extension of $F$ in which $p$ splits. We fix two positive integers $r,s in mathbb N$. We investigate the Tate conjecture on the special fiber of $G(U(r,s) times
The integral model of a GU(n-1,1) Shimura variety carries a universal abelian scheme over it, and the dual top exterior power of its Lie algebra carries a natural hermitian metric. We express the arithmetic volume of this metrized line bundle, define
Let $F$ be a totally real field in which a prime number $p>2$ is inert. We continue the study of the (generalized) Goren--Oort strata on quaternionic Shimura varieties over finite extensions of $mathbb F_p$. We prove that, when the dimension of the q