ﻻ يوجد ملخص باللغة العربية
We aim to understand the contribution of the ionized, atomic and molecular phases of the ISM to the [CII] emission from clouds near the dynamical center and the BCLMP302 HII region in the north of the nearby galaxy M33 at a spatial resolution of 50pc. We combine high resolution [CII] spectra taken with the HIFI spectrometer onboard the Herschel satellite with [CII] Herschel-PACS maps and ground-based observations of CO(2-1) and HI. All data are at a common spatial resolution of 50pc. Typically, the [CII] lines have widths intermediate between the narrower CO(2-1) and broader HI line profiles. We decomposed the [CII] spectra in terms of contribution from molecular and atomic gas detected in CO(2-1) and HI, respectively. We find that the relative contribution of molecular and atomic gas traced by CO(2-1) and HI varies depends mostly on the local physical conditions and geometry. We estimate that 11-60% and 5-34% of the [CII] intensities in the center and in BCLMP302, respectively, arise at velocities showing no CO(2-1) or HI emission and could arise in CO-dark molecular gas. The deduced strong variation in the [CII] emission not associated with CO and HI cannot be explained in terms of differences in A_v, far-ultraviolet radiation field, and metallicity between the two studied regions. Hence the relative amounts of diffuse (CO-dark) and dense molecular gas possibly vary on spatial scales smaller than 50pc. Based on the emission measure observed at radio wavelengths we estimate the contribution of ionized gas at a few positions to lie between 10-25%. The correlations between the intensities of tracers corresponding to the same velocity range as [CII], differ from the correlation derived from PACS data. The results in this paper emphasize the need for velocity-resolved observations to discern the contribution of different components of the ISM to [CII] emission. (abridged)
Context: The emission line of [CII] at 158 micron is one of the strongest cooling lines of the interstellar medium (ISM) in galaxies. Aims: Disentangling the relative contributions of the different ISM phases to [CII] emission, is a major topic of th
We aim to better understand the heating of the gas by observing the prominent gas cooling line [CII] at 158um in the low-metallicity environment of the Local Group spiral galaxy M33 at scales of 280pc. In particular, we aim at describing the variatio
M33 is a gas rich spiral galaxy of the Local Group. We investigate the relationship between the two major gas cooling lines and the total infrared (TIR) dust continuum. We mapped the emission of gas and dust in M33 using the far-infrared lines of [CI
The [CII] fine-structure transition at 158 micron is frequently the brightest far-infrared line in galaxies. Due to its low ionization potential, C+ can trace the ionized, atomic, and molecular phases of the ISM. We present velocity resolved [CII] an
We present the first 7.5x11.5 velocity-resolved map of the [CII]158um line toward the Orion molecular cloud-1 (OMC-1) taken with the Herschel/HIFI instrument. In combination with far-infrared (FIR) photometric images and velocity-resolved maps of the