ترغب بنشر مسار تعليمي؟ اضغط هنا

Velocity resolved [CII] spectroscopy of the center and the BCLMP302 region of M33 (HerM33es)

152   0   0.0 ( 0 )
 نشر من قبل Bhaswati Mookerjea
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to understand the contribution of the ionized, atomic and molecular phases of the ISM to the [CII] emission from clouds near the dynamical center and the BCLMP302 HII region in the north of the nearby galaxy M33 at a spatial resolution of 50pc. We combine high resolution [CII] spectra taken with the HIFI spectrometer onboard the Herschel satellite with [CII] Herschel-PACS maps and ground-based observations of CO(2-1) and HI. All data are at a common spatial resolution of 50pc. Typically, the [CII] lines have widths intermediate between the narrower CO(2-1) and broader HI line profiles. We decomposed the [CII] spectra in terms of contribution from molecular and atomic gas detected in CO(2-1) and HI, respectively. We find that the relative contribution of molecular and atomic gas traced by CO(2-1) and HI varies depends mostly on the local physical conditions and geometry. We estimate that 11-60% and 5-34% of the [CII] intensities in the center and in BCLMP302, respectively, arise at velocities showing no CO(2-1) or HI emission and could arise in CO-dark molecular gas. The deduced strong variation in the [CII] emission not associated with CO and HI cannot be explained in terms of differences in A_v, far-ultraviolet radiation field, and metallicity between the two studied regions. Hence the relative amounts of diffuse (CO-dark) and dense molecular gas possibly vary on spatial scales smaller than 50pc. Based on the emission measure observed at radio wavelengths we estimate the contribution of ionized gas at a few positions to lie between 10-25%. The correlations between the intensities of tracers corresponding to the same velocity range as [CII], differ from the correlation derived from PACS data. The results in this paper emphasize the need for velocity-resolved observations to discern the contribution of different components of the ISM to [CII] emission. (abridged)

قيم البحث

اقرأ أيضاً

Context: The emission line of [CII] at 158 micron is one of the strongest cooling lines of the interstellar medium (ISM) in galaxies. Aims: Disentangling the relative contributions of the different ISM phases to [CII] emission, is a major topic of th e HerM33es program, a Herschel key project to study the ISM in the nearby spiral galaxy M33. Methods: Using PACS, we have mapped the emission of [CII] 158 micron, [OI] 63 micron, and other FIR lines in a 2x2 region of the northern spiral arm of M33, centered on the HII region BCLMP302. At the peak of H-alpha emission, we have observed in addition a velocity resolved [CII] spectrum using HIFI. We use scatterplots to compare these data with PACS 160 micron continuum maps, and with maps of CO and HI data, at a common resolution of 12 arcsec or 50 pc. Maps of H-alpha and 24 micron emission observed with Spitzer are used to estimate the SFR. We have created maps of the [CII] and [OI] 63 micron emission and detected [NII] 122 micron and NIII 57 micron at individual positions. Results: The [CII] line observed with HIFI is significantly broader than that of CO, and slightly blue-shifted. In addition, there is little spatial correlation between [CII] observed with PACS and CO over the mapped region. There is even less spatial correlation between [CII] and the atomic gas traced by HI. Detailed comparison of the observed intensities towards the HII region with models of photo ionization and photon dominated regions, confirms that a significant fraction, 20--30%, of the observed [CII] emission stems from the ionized gas and not from the molecular cloud. The gas heating efficiency, using the ratio between [CII] and the TIR as a proxy, varies between 0.07 and 1.5%, with the largest variations found outside the HII region.
We aim to better understand the heating of the gas by observing the prominent gas cooling line [CII] at 158um in the low-metallicity environment of the Local Group spiral galaxy M33 at scales of 280pc. In particular, we aim at describing the variatio n of the photoelectric heating efficiency with galactic environment. In this unbiased study, we used ISO/LWS [CII] observations along the major axis of M33, in combination with Herschel PACS and SPIRE continuum maps, IRAM 30m CO 2-1 and VLA HI data to study the variation of velocity integrated intensities. The ratio of [CII] emission over the far-infrared continuum is used as a proxy for the heating efficiency, and models of photon-dominated regions are used to study the local physical densities, FUV radiation fields, and average column densities of the molecular clouds. The heating efficiency stays constant at 0.8% in the inner 4.5kpc radius of the galaxy where it starts to increase to reach values of ~3% in the outskirts at about 6kpc radial distance. The rise of efficiency is explained in the framework of PDR models by lowered volume densities and FUV fields, for optical extinctions of only a few magnitudes at constant metallicity. In view of the significant fraction of HI emission stemming from PDRs, and for typical pressures found in the Galactic cold neutral medium (CNM) traced by HI emission, the CNM contributes ~15% to the observed [CII] emission in the inner 2kpc radius of M33. The CNM contribution remains largely undetermined in the south, while positions between 2 and 7.3kpc radial distance in the north of M33 show a contribution of ~40%+-20%.
M33 is a gas rich spiral galaxy of the Local Group. We investigate the relationship between the two major gas cooling lines and the total infrared (TIR) dust continuum. We mapped the emission of gas and dust in M33 using the far-infrared lines of [CI I] and [OI](63um) and the TIR. The line maps were observed with Herschel/PACS. These maps have 50pc resolution and form a ~370pc wide stripe along its major axis covering the sites of bright HII regions, but also more quiescent arm and inter-arm regions from the southern arm at 2kpc galacto-centric distance to the south out to 5.7kpc distance to the north. Full-galaxy maps of the continuum emission at 24um from Spitzer/MIPS, and at 70um, 100um, and 160um from PACS were combined to obtain a map of the TIR. TIR and [CII] intensities are correlated over more than two orders of magnitude. The range of TIR translates to a range of far ultraviolet (FUV) emission of G0,obs~2 to 200 in units of the average Galactic radiation field. The binned [CII]/TIR ratio drops with rising TIR, with large, but decreasing scatter. Fits of modified black bodies (MBBs) to the continuum emission were used to estimate dust mass surface densities and total gas column densities. A correction for possible foreground absorption by cold gas was applied to the [OI] data before comparing it with models of photon dominated regions (PDRs). Most of the ratios of [CII]/[OI] and ([CII]+[OI])/TIR are consistent with two model solutions. The median ratios are consistent with one solution at n~2x10^2 cm-3, G0~60, and and a second low-FUV solution at n~10^4 cm-3, G0~1.5. The bulk of the gas along the lines-of-sight is represented by a low-density, high-FUV phase with low beam filling factors ~1. A fraction of the gas may, however, be represented by the second solution.
The [CII] fine-structure transition at 158 micron is frequently the brightest far-infrared line in galaxies. Due to its low ionization potential, C+ can trace the ionized, atomic, and molecular phases of the ISM. We present velocity resolved [CII] an d [NII] pointed observations from SOFIA/GREAT on ~500 pc scales in the nearby galaxies M101 and NGC 6946 and investigate the multi-phase origin of [CII] emission over a range of environments. We show that ionized gas makes a negligible contribution to the [CII] emission in these positions using [NII] observations. We spectrally decompose the [CII] emission into components associated with the molecular and atomic phases using existing CO(2-1) and HI data and show that a peak signal-to-noise ratio of 10-15 is necessary for a reliable decomposition. In general, we find that in our pointings greater than or equal to 50% of the [CII] emission arises from the atomic phase, with no strong dependence on star formation rate, metallicity, or galactocentric radius. We do find a difference between pointings in these two galaxies, where locations in NGC 6946 tend to have larger fractions of [CII] emission associated with the molecular phase than in M101. We also find a weak but consistent trend for fainter [CII] emission to exhibit a larger contribution from the atomic medium. We compute the thermal pressure of the cold neutral medium through the [CII] cooling function and find log(P_th/k)=3.8-4.6 [K cm^-3], a value slightly higher than similar determinations, likely because our observations are biased towards star-forming regions.
We present the first 7.5x11.5 velocity-resolved map of the [CII]158um line toward the Orion molecular cloud-1 (OMC-1) taken with the Herschel/HIFI instrument. In combination with far-infrared (FIR) photometric images and velocity-resolved maps of the H41alpha hydrogen recombination and CO J=2-1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [CII] luminosity (~85%) is from the extended, FUV-illuminated face of the cloud G_0>500, n_H>5x10^3 cm^-3) and from dense PDRs (G_0~10^4, n_H~10^5 cm^-3) at the interface between OMC-1 and the HII region surrounding the Trapezium cluster. Around 15% of the [CII] emission arises from a different gas component without CO counterpart. The [CII] excitation, PDR gas turbulence, line opacity (from [13CII]) and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the [CII]/FIR and FIR/M_Gas ratios and show that [CII]/FIR decreases from the extended cloud component (10^-2-10^-3) to the more opaque star-forming cores (10^-3-10^-4). The lowest values are reminiscent of the [CII] deficit seen in local ultra-luminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing [CII]/FIR ratio correlates better with the column density of dust through the molecular cloud than with FIR/M_Gas. We conclude that the [CII] emitting column relative to the total dust column along each line of sight is responsible for the observed [CII]/FIR variations through the cloud.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا