ﻻ يوجد ملخص باللغة العربية
We study the interplay between population imbalance in a two-component fermionic system and nearest-neighbor interaction using matrix product states method. Our analysis reveals the existence of a new type of Fulde-Ferrell-Larkin-Ovchinnikov phase in the presence of competing interactions. Furthermore, we find distinct evidence for the presence of hidden order in the system. We present an effective model to understand the emergent oscillations in the string correlations due to the imbalance, and show how they can become an efficient tool to investigate systems with imbalance.
Using the time-dependent density matrix renormalization group method and exact diagonalization, we study the non-equilibrium dynamics of the one-dimensional Fermi-Hubbard model following a quantum quench or a ramp of the onsite interaction strength.
Pairing in a population imbalanced Fermi system in a two-dimensional optical lattice is studied using Determinant Quantum Monte Carlo (DQMC) simulations and mean-field calculations. The approximation-free numerical results show a wide range of stabil
We study a two-component Fermi system with attractive interactions and different populations of the two species in a cubic lattice. For an intermediate coupling we find a uniformly polarized superfluid which is stable down to very low temperatures. T
The Extended Fermi-Hubbard model is a rather studied Hamiltonian due to both its many applications and a rich phase diagram. Here we prove that all the phase transitions encoded in its one dimensional version are detectable via non-local operators re
Recently, it has become apparent that, when the interactions between polar molecules in optical lattices becomes strong, the conventional description using the extended Hubbard model has to be modified by additional terms, in particular a density-dep