ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering Long-Lived Collective Dark States in Spin Ensembles

99   0   0.0 ( 0 )
 نشر من قبل Stefan Putz
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ensembles of electron spins in hybrid microwave systems are powerful and versatile components for future quantum technologies. Quantum memories with high storage capacities are one such example which require long-lived states that can be addressed and manipulated coherently within the inhomogeneously broadened ensemble. This broadening is essential for true multimode memories, but induces a considerable spin dephasing and together with dissipation from a cavity interface poses a constraint on the memorys storage time. In this work we show how to overcome both of these limitations through the engineering of long-lived dark states in an ensemble of electron spins hosted by nitrogen-vacancy centres in diamond. By burning narrow spectral holes into a spin ensemble strongly coupled to a superconducting microwave cavity, we observe long-lived Rabi oscillations with high visibility and a decay rate that is a factor of forty smaller than the spin ensemble linewidth and thereby a factor of more than three below the pure cavity dissipation rate. This significant reduction lives up to the promise of hybrid devices to perform better than their individual subcomponents. To demonstrate the potential of our approach we realise the first step towards a solid-state microwave spin multiplexer by engineering multiple long-lived dark states. Our results show that we can fully access the decoherence free subspace in our experiment and selectively prepare protected states by spectral hole burning. This technique opens up the way for truly long-lived quantum memories, solid-state microwave frequency combs, optical to microwave quantum transducers and spin squeezed states. Our approach also paves the way for a new class of cavity QED experiments with dense spin ensembles, where dipole spin-spin interactions become important and many-body phenomena will be directly accessible on a chip.

قيم البحث

اقرأ أيضاً

Coplanar microwave resonators made of 330 nm-thick superconducting YBCO have been realized and characterized in a wide temperature ($T$, 2-100 K) and magnetic field ($B$, 0-7 T) range. The quality factor $Q_L$ exceeds 10$^4$ below 55 K and it slightl y decreases for increasing fields, remaining 90$%$ of $Q_L(B=0)$ for $B=7$ T and $T=2$ K. These features allow the coherent coupling of resonant photons with a spin ensemble at finite temperature and magnetic field. To demonstrate this, collective strong coupling was achieved by using DPPH organic radical placed at the magnetic antinode of the fundamental mode: the in-plane magnetic field is used to tune the spin frequency gap splitting across the single-mode cavity resonance at 7.75 GHz, where clear anticrossings are observed with a splitting as large as $sim 82$ MHz at $T=2$ K. The spin-cavity collective coupling rate is shown to scale as the square root of the number of active spins in the ensemble.
We investigate theoretically the coupling of a cavity mode to a continuous distribution of emitters. We discuss the influence of the emitters inhomogeneous broadening on the existence and on the coherence properties of the polaritonic peaks. We find that their coherence depends crucially on the shape of the distribution and not only on its width. Under certain conditions the coupling to the cavity protects the polaritonic states from inhomogeneous broadening, resulting in a longer storage time for a quantum memory based on emitters ensembles. When two different ensembles of emitters are coupled to the resonator, they support a peculiar collective dark state, also very attractive for the storage of quantum information.
We use one single, few-picosecond-long, variably polarized laser pulse to deterministically write any selected spin state of a quantum dot confined dark exciton whose life and coherence time are six and five orders of magnitude longer than the laser pulse duration, respectively. The pulse is tuned to an absorption resonance of an excited dark exciton state, which acquires non-negligible oscillator strength due to residual mixing with bright exciton states. We obtain a high fidelity one-to-one mapping from any point on the Poincare sphere of the pulse polarization to a corresponding point on the Bloch sphere of the spin of the deterministically photogenerated dark exciton.
We report the experimental realization of a 3D capacitively-shunt superconducting flux qubit with long coherence times. At the optimal flux bias point, the qubit demonstrates energy relaxation times in the 60-90 $mu$s range, and Hahn-echo coherence t ime of about 80 $mu$s which can be further improved by dynamical decoupling. Qubit energy relaxation can be attributed to quasiparticle tunneling, while qubit dephasing is caused by flux noise away from the optimal point. Our results show that 3D c-shunt flux qubits demonstrate improved performance over other types of flux qubits which is advantageous for applications such as quantum magnetometry and spin sensing.
We propose to synthesize arbitrary nonclassical motional states in optomechanical systems by using sideband excitations and photon blockade. We first demonstrate that the Hamiltonian of the optomechanical systems can be reduced, in the strong single- photon optomechanical coupling regime when the photon blockade occurs, to one describing the interaction between a driven two-level trapped ion and the vibrating modes, and then show a method to generate target states by using a series of classical pulses with desired frequencies, phases, and durations. We further analyze the effect of the photon leakage, due to small anharmonicity, on the fidelity of the expected motional state, and study environment induced decoherence. Moreover, we also discuss the experimental feasibility and provide operational parameters using the possible experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا