ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Forster Resonances

146   0   0.0 ( 0 )
 نشر من قبل Hannes Gorniaczyk
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mapping the strong interaction between Rydberg atoms onto single photons via electromagnetically induced transparency enables manipulation of light on the single photon level and novel few-photon devices such as all-optical switches and transistors operated by individual photons. Here, we demonstrate experimentally that Stark-tuned Forster resonances can substantially increase this effective interaction between individual photons. This technique boosts the gain of a single-photon transistor to over 100, enhances the non-destructive detection of single Rydberg atoms to a fidelity beyond 0.8, and enables high precision spectroscopy on Rydberg pair states. On top, we achieve a gain larger than 2 with gate photon read-out after the transistor operation. Theory models for Rydberg polariton propagation on Forster resonance and for the projection of the stored spin-wave yield excellent agreement to our data and successfully identify the main decoherence mechanism of the Rydberg transistor, paving the way towards photonic quantum gates.

قيم البحث

اقرأ أيضاً

We report on experiments exploring Stark-tuned Forster resonances between Rydberg atoms with unprecedented resolution in the Forster defect. The individual resonances are expected to exhibit different angular dependencies, opening the possibility to tune not only the interaction strength but also the angular dependence of the pair state potentials by an external electric field. We achieve a high resolution by optical Ramsey interferometry for Rydberg atoms combined with electric field pulses. The resonances are detected by a loss of visibility in the Ramsey fringes due to resonances in the interaction. We present measurements of the density dependence as well as of the coherence time at and close to Forster resonances.
135 - I. I. Beterov , M. Saffman 2015
We calculate interspecies Rydberg-Rydberg interaction strengths for the heavy alkalis Rb and Cs. The presence of strong Forster resonances makes interspecies coupling a promising approach for long range entanglement generation. We also provide an ove rview of the strongest Forster resonances for Rb-Rb and Cs-Cs using different principal quantum numbers for the two atoms. We show how interspecies coupling can be used for high fidelity quantum non demolition state measurements with low crosstalk in qubit arrays.
The preparation of light pulses with well-defined quantum properties requires precise control at the individual photon level. Here, we demonstrate exact and controlled multi-photon subtraction from incoming light pulses. We employ a cascaded system o f tightly confined cold atom ensembles with strong, collectively enhanced coupling of photons to Rydberg states. The excitation blockade resulting from interactions between Rydberg atoms limits photon absorption to one per ensemble and engineered dephasing of the collective excitation suppresses stimulated re-emission of the photon. We experimentally demonstrate subtraction with up to three absorbers. Furthermore, we present a thorough theoretical analysis of our scheme where we identify weak Raman decay of the long-lived Rydberg state as the main source of infidelity in the subtracted photon number. We show that our scheme should scale well to higher absorber numbers if the Raman decay can be further suppressed.
Long-range interactions between cold Rydberg atoms, which are used in many important applications, can be enhanced using Forster resonances between collective many-body states controlled by an external electric field. Here we report on the first expe rimental observation of highly-resolved radio-frequency-assisted Forster resonances in a few cold Rb Rydberg atoms. We also observed radio-frequency-induced Forster resonances which cannot be tuned by a dc electric field. They imply an efficient transition from van der Waals to resonant dipole-dipole interaction due to Floquet sidebands of Rydberg levels appearing in the rf-field. This method can be applied to enhance the interactions of almost arbitrary Rydberg atoms with large principal quantum numbers.
We provide a theoretical framework describing slow-light polaritons interacting via atomic Rydberg states. We use a diagrammatic method to analytically derive the scattering properties of two polaritons. We identify parameter regimes where polariton- polariton interactions are repulsive. Furthermore, in the regime of attractive interactions, we identify multiple two-polariton bound states, calculate their dispersion, and study the resulting scattering resonances. Finally, the two-particle scattering properties allow us to derive the effective low-energy many-body Hamiltonian. This theoretical platform is applicable to ongoing experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا