ﻻ يوجد ملخص باللغة العربية
Optical orthogonal signature pattern codes (OOSPCs) play an important role in a novel type of optical code-division multiple-access (CDMA) network for 2-dimensional image transmission. There is a one-to-one correspondence between an $(m, n, w, lambda)$-OOSPC and a $(lambda+1)$-$(mn,w,1)$ packing design admitting an automorphism group isomorphic to $mathbb{Z}_mtimes mathbb{Z}_n$. In 2010, Sawa gave the first infinite class of $(m, n, 4, 2)$-OOSPCs by using $S$-cyclic Steiner quadruple systems. In this paper, we use various combinatorial designs such as strictly $mathbb{Z}_mtimes mathbb{Z}_n$-invariant $s$-fan designs, strictly $mathbb{Z}_mtimes mathbb{Z}_n$-invariant $G$-designs and rotational Steiner quadruple systems to present some constructions for $(m, n, 4, 2)$-OOSPCs. As a consequence, our new constructions yield more infinite families of optimal $(m, n, 4, 2)$-OOSPCs. Especially, we shall see that in some cases an optimal $(m, n, 4, 2)$-OOSPC can not achieve the Johnson bound.
Optical orthogonal signature pattern codes (OOSPCs) have attracted wide attention as signature patterns of spatial optical code division multiple access networks. In this paper, an improved upper bound on the size of an $(m,n,3,lambda_a,1)$-OOSPC wit
The parameters of MDS self-dual codes are completely determined by the code length. In this paper, we utilize generalized Reed-Solomon (GRS) codes and extended GRS codes to construct MDS self-dual (self-orthogonal) codes and MDS almost self-dual code
Optimal rank-metric codes in Ferrers diagrams can be used to construct good subspace codes. Such codes consist of matrices having zeros at certain fixed positions. This paper generalizes the known constructions for Ferrers diagram rank-metric (FDRM)
There is a local ring $E$ of order $4,$ without identity for the multiplication, defined by generators and relations as $E=langle a,b mid 2a=2b=0,, a^2=a,, b^2=b,,ab=a,, ba=brangle.$ We study a special construction of self-orthogonal codes over $E,
As an important coding scheme in modern distributed storage systems, locally repairable codes (LRCs) have attracted a lot of attentions from perspectives of both practical applications and theoretical research. As a major topic in the research of LRC