ترغب بنشر مسار تعليمي؟ اضغط هنا

Combinatorial Constructions of Optimal $(m, n,4,2)$ Optical Orthogonal Signature Pattern Codes

153   0   0.0 ( 0 )
 نشر من قبل Lijun Ji
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical orthogonal signature pattern codes (OOSPCs) play an important role in a novel type of optical code-division multiple-access (CDMA) network for 2-dimensional image transmission. There is a one-to-one correspondence between an $(m, n, w, lambda)$-OOSPC and a $(lambda+1)$-$(mn,w,1)$ packing design admitting an automorphism group isomorphic to $mathbb{Z}_mtimes mathbb{Z}_n$. In 2010, Sawa gave the first infinite class of $(m, n, 4, 2)$-OOSPCs by using $S$-cyclic Steiner quadruple systems. In this paper, we use various combinatorial designs such as strictly $mathbb{Z}_mtimes mathbb{Z}_n$-invariant $s$-fan designs, strictly $mathbb{Z}_mtimes mathbb{Z}_n$-invariant $G$-designs and rotational Steiner quadruple systems to present some constructions for $(m, n, 4, 2)$-OOSPCs. As a consequence, our new constructions yield more infinite families of optimal $(m, n, 4, 2)$-OOSPCs. Especially, we shall see that in some cases an optimal $(m, n, 4, 2)$-OOSPC can not achieve the Johnson bound.



قيم البحث

اقرأ أيضاً

80 - Rong Pan , Tao Feng , Lidong Wang 2019
Optical orthogonal signature pattern codes (OOSPCs) have attracted wide attention as signature patterns of spatial optical code division multiple access networks. In this paper, an improved upper bound on the size of an $(m,n,3,lambda_a,1)$-OOSPC wit h $lambda_a=2,3$ is established. The exact number of codewords of an optimal $(m,n,3,lambda_a,1)$-OOSPC is determined for any positive integers $m,nequiv2 ({rm mod } 4)$ and $lambda_ain{2,3}$.
The parameters of MDS self-dual codes are completely determined by the code length. In this paper, we utilize generalized Reed-Solomon (GRS) codes and extended GRS codes to construct MDS self-dual (self-orthogonal) codes and MDS almost self-dual code s over. The main idea of our constructions is to choose suitable evaluation points such that the corresponding (extended) GRS codes are Euclidean self-dual (self-orthogonal). The evaluation sets are consists of two subsets which satisfy some certain conditions and the length of these codes can be expressed as a linear combination of two factors of q-1. Four families of MDS self-dual codes, two families of MDS self-orthogonal codes and two families of MDS almost self-dual codes are obtained and they have new parameters.
268 - Shuangqing Liu , Yanxun Chang , 2018
Optimal rank-metric codes in Ferrers diagrams can be used to construct good subspace codes. Such codes consist of matrices having zeros at certain fixed positions. This paper generalizes the known constructions for Ferrers diagram rank-metric (FDRM) codes. Via a criteria for linear maximum rank distance (MRD) codes, an explicit construction for a class of systematic MRD codes is presented, which is used to produce new optimal FDRM codes. By exploring subcodes of Gabidulin codes, if each of the rightmost $delta-1$ columns in Ferrers diagram $cal F$ has at least $n-r$ dots, where $r$ is taken in a range, then the conditions that an FDRM code in $cal F$ is optimal are established. The known combining constructions for FDRM code are generalized by introducing the concept of proper combinations of Ferrers diagrams.
There is a local ring $E$ of order $4,$ without identity for the multiplication, defined by generators and relations as $E=langle a,b mid 2a=2b=0,, a^2=a,, b^2=b,,ab=a,, ba=brangle.$ We study a special construction of self-orthogonal codes over $E, $ based on combinatorial matrices related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular Tournaments (DRT). We construct quasi self-dual codes over $E,$ and Type IV codes, that is, quasi self-dual codes whose all codewords have even Hamming weight. All these codes can be represented as formally self-dual additive codes over $F_4.$ The classical invariant theory bound for the weight enumerators of this class of codesimproves the known bound on the minimum distance of Type IV codes over $E.$
93 - Xiangliang Kong , Xin Wang , 2020
As an important coding scheme in modern distributed storage systems, locally repairable codes (LRCs) have attracted a lot of attentions from perspectives of both practical applications and theoretical research. As a major topic in the research of LRC s, bounds and constructions of the corresponding optimal codes are of particular concerns. In this work, codes with $(r,delta)$-locality which have optimal minimal distance w.r.t. the bound given by Prakash et al. cite{Prakash2012Optimal} are considered. Through parity check matrix approach, constructions of both optimal $(r,delta)$-LRCs with all symbol locality ($(r,delta)_a$-LRCs) and optimal $(r,delta)$-LRCs with information locality ($(r,delta)_i$-LRCs) are provided. As a generalization of a work of Xing and Yuan cite{XY19}, these constructions are built on a connection between sparse hypergraphs and optimal $(r,delta)$-LRCs. With the help of constructions of large sparse hypergraphs, the length of codes constructed can be super-linear in the alphabet size. This improves upon previous constructions when the minimal distance of the code is at least $3delta+1$. As two applications, optimal H-LRCs with super-linear length and GSD codes with unbounded length are also constructed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا