ترغب بنشر مسار تعليمي؟ اضغط هنا

Incidental Scene Text Understanding: Recent Progresses on ICDAR 2015 Robust Reading Competition Challenge 4

190   0   0.0 ( 0 )
 نشر من قبل Cong Yao
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Different from focused texts present in natural images, which are captured with users intention and intervention, incidental texts usually exhibit much more diversity, variability and complexity, thus posing significant difficulties and challenges for scene text detection and recognition algorithms. The ICDAR 2015 Robust Reading Competition Challenge 4 was launched to assess the performance of existing scene text detection and recognition methods on incidental texts as well as to stimulate novel ideas and solutions. This report is dedicated to briefly introduce our strategies for this challenging problem and compare them with prior arts in this field.



قيم البحث

اقرأ أيضاً

Recently, text detection and recognition in natural scenes are becoming increasing popular in the computer vision community as well as the document analysis community. However, majority of the existing ideas, algorithms and systems are specifically d esigned for English. This technical report presents the final results of the ICDAR 2015 Text Reading in the Wild (TRW 2015) competition, which aims at establishing a benchmark for assessing detection and recognition algorithms devised for both Chinese and English scripts and providing a playground for researchers from the community. In this article, we describe in detail the dataset, tasks, evaluation protocols and participants of this competition, and report the performance of the participating methods. Moreover, promising directions for future research are discussed.
Scene video text spotting (SVTS) is a very important research topic because of many real-life applications. However, only a little effort has put to spotting scene video text, in contrast to massive studies of scene text spotting in static images. Du e to various environmental interferences like motion blur, spotting scene video text becomes very challenging. To promote this research area, this competition introduces a new challenge dataset containing 129 video clips from 21 natural scenarios in full annotations. The competition containts three tasks, that is, video text detection (Task 1), video text tracking (Task 2) and end-to-end video text spotting (Task3). During the competition period (opened on 1st March, 2021 and closed on 11th April, 2021), a total of 24 teams participated in the three proposed tasks with 46 valid submissions, respectively. This paper includes dataset descriptions, task definitions, evaluation protocols and results summaries of the ICDAR 2021 on SVTS competition. Thanks to the healthy number of teams as well as submissions, we consider that the SVTS competition has been successfully held, drawing much attention from the community and promoting the field research and its development.
Driven by deep learning and the large volume of data, scene text recognition has evolved rapidly in recent years. Formerly, RNN-attention based methods have dominated this field, but suffer from the problem of textit{attention drift} in certain situa tions. Lately, semantic segmentation based algorithms have proven effective at recognizing text of different forms (horizontal, oriented and curved). However, these methods may produce spurious characters or miss genuine characters, as they rely heavily on a thresholding procedure operated on segmentation maps. To tackle these challenges, we propose in this paper an alternative approach, called TextScanner, for scene text recognition. TextScanner bears three characteristics: (1) Basically, it belongs to the semantic segmentation family, as it generates pixel-wise, multi-channel segmentation maps for character class, position and order; (2) Meanwhile, akin to RNN-attention based methods, it also adopts RNN for context modeling; (3) Moreover, it performs paralleled prediction for character position and class, and ensures that characters are transcripted in correct order. The experiments on standard benchmark datasets demonstrate that TextScanner outperforms the state-of-the-art methods. Moreover, TextScanner shows its superiority in recognizing more difficult text such Chinese transcripts and aligning with target characters.
With hundreds of thousands of electronic chip components are being manufactured every day, chip manufacturers have seen an increasing demand in seeking a more efficient and effective way of inspecting the quality of printed texts on chip components. The major problem that deters this area of research is the lacking of realistic text on chips datasets to act as a strong foundation. Hence, a text on chips dataset, ICText is used as the main target for the proposed Robust Reading Challenge on Integrated Circuit Text Spotting and Aesthetic Assessment (RRC-ICText) 2021 to encourage the research on this problem. Throughout the entire competition, we have received a total of 233 submissions from 10 unique teams/individuals. Details of the competition and submission results are presented in this report.
This paper presents the final results of the ICDAR 2021 Competition on Historical Map Segmentation (MapSeg), encouraging research on a series of historical atlases of Paris, France, drawn at 1/5000 scale between 1894 and 1937. The competition feature d three tasks, awarded separately. Task~1 consists in detecting building blocks and was won by the L3IRIS team using a DenseNet-121 network trained in a weakly supervised fashion. This task is evaluated on 3 large images containing hundreds of shapes to detect. Task~2 consists in segmenting map content from the larger map sheet, and was won by the UWB team using a U-Net-like FCN combined with a binarization method to increase detection edge accuracy. Task~3 consists in locating intersection points of geo-referencing lines, and was also won by the UWB team who used a dedicated pipeline combining binarization, line detection with Hough transform, candidate filtering, and template matching for intersection refinement. Tasks~2 and~3 are evaluated on 95 map sheets with complex content. Dataset, evaluation tools and results are available under permissive licensing at url{https://icdar21-mapseg.github.io/}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا