ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling arbitrarily shaped and tightly focused laser pulses in electromagnetic codes

118   0   0.0 ( 0 )
 نشر من قبل Illia Thiele
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Investigation of laser matter interaction with electromagnetic codes requires to implement sources for the electromagnetic fields. A way to do so is to prescribe the fields at the numerical box boundaries in order to achieve the desired fields inside the numerical box. Here we show that the often used paraxial approximation can lead to unexpected field profiles with strong impact on the laser matter interaction results. We propose an efficient numerical algorithm to compute the required laser boundary conditions consistent with the Maxwells equations for arbitrarily shaped, tightly focused laser pulses.

قيم البحث

اقرأ أيضاً

Non-linear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied numerically in the classical approximation including the radiation damping for the quantum parameter hwx-ray/E<1 and an arbitrary radiation pa rameter Kai. The electron energy loss, along with its side scattering by the ponderomotive force, makes the scattering in the vicinity of high laser field nearly impossible at high electron energies. The use of a second, co-propagating laser pulse as a booster is shown to solve this problem.
Two dimensional particle-in-cell simulations characterizing the interaction of ultraintense short pulse lasers in the range 10^{18} leq I leq 10^{20} W/cm^{2} with converging target geometries are presented. Seeking to examine intensity amplification in high-power laser systems, where focal spots are typically non-diffraction limited, we describe key dynamical features as the injected laser intensity and convergence angle of the target are systematically varied. We find that laser pulses are focused down to a wavelength with the peak intensity amplified by an order of magnitude beyond its vacuum value, and develop a simple model for how the peak location moves back towards the injection plane over time. This performance is sustained over hundreds of femtoseconds and scales to laser intensities beyond 10^{20} W/cm^{2} at 1 mu m wavelength.
We present a regime where an ultra-intense laser pulse interacting with a foil target results in high $gamma$-photon conversion efficiency, obtained via three-dimensional quantum-electrodynamics particle-in-cell simulations. A single-cycle laser puls e is used under the tight-focusing condition for obtaining the $mathrm{lambda}^3$ regime. The simulations employ a radially polarized laser as it results in higher $gamma$-photon conversion efficiency compared to both azimuthal and linear polarizations. A significant fraction of the laser energy is transferred to positrons, while a part of the electromagnetic wave escapes the target as attosecond single-cycle pulses.
The first step in the coherent control of a photoinduced binary reaction is bond making or photoassociation. We have recently demonstrated coherent control of bond making in multi-photon femtosecond photoassociation of hot magnesium atoms, using line arly chirped pulses [Levin et al., arXiv:1411.1542]. The detected yield of photoassociated magnesium dimers was enhanced by positively chirped pulses which is explained theoretically by a combination of purification and chirp-dependent Raman transitions. The yield could be further enhanced by pulse optimization resulting in pulses with an effective linear chirp and a sub-pulse structure, where the latter allows for exploiting vibrational coherences. Here, we systematically explore the efficiency of phase-shaped pulses for the coherent control of bond making, employing a parametrization of the spectral phases in the form of cosine functions. We find up to an order of magnitude enhancement of the yield compared to the unshaped transform-limited pulse. The highly performing pulses all display an overall temporally increasing instantaneous frequency and are composed of several overlapping sub-pulses. The time delay between the first two sub-pulses almost perfectly fits the vibrational frequency of the generated intermediate wavepacket.These findings are in agreement with chirp-dependent Raman transitions and exploitation of vibrational dynamics as underlying control mechanisms.
A new regime in the interaction of a two-colour ($omega$,$2omega$) laser with a nanometre-scale foil is identified, resulting in the emission of extremely intense, isolated attosecond pulses - even in the case of multi-cycle lasers. For foils irradia ted by lasers exceeding the blow-out field strength (i.e. capable of fully separating electrons from the ion background), the addition of a second harmonic field results in the stabilization of the foil up to the blow-out intensity. This is then followed by a sharp transition to transparency that essentially occurs in a single optical cycle. During the transition cycle, a dense, nanometre-scale electron bunch is accelerated to relativistic velocities and emits a single, strong attosecond pulse with a peak intensity approaching that of the laser field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا