ترغب بنشر مسار تعليمي؟ اضغط هنا

Horseshoe drag in three-dimensional globally isothermal disks

109   0   0.0 ( 0 )
 نشر من قبل Frederic S. Masset
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the horseshoe dynamics of a low-mass planet in a three-dimensional, globally isothermal, inviscid disk. We find, as reported in previous work, that the boundaries of the horseshoe region (separatrix sheets) have cylindrical symmetry about the disks rotation axis. We interpret this feature as arising from the fact that the whole separatrix sheets have a unique value of Bernoullis constant, and that this constant does not depend on altitude, but only on the cylindrical radius, in barotropic disks. We next derive an expression for the torque exerted by the horseshoe region onto the planet, or horseshoe drag. Potential vorticity is not materially conserved as in two-dimensional flows, but it obeys a slightly more general conservation law (Ertels theorem) which allows to obtain an expression for the horseshoe drag identical to the expression in a two-dimensional disk. Our results are illustrated and validated by three-dimensional numerical simulations. The horseshoe region is found to be slightly more narrow than previously extrapolated from two-dimensional analyses with a suitable softening length of the potential. We discuss the implications of our results for the saturation of the corotation torque, and the possible connection to the flow at the Bondi scale, which the present analysis does not resolve.



قيم البحث

اقرأ أيضاً

99 - J. Casoli , F. S. Masset 2009
We investigate the unsaturated horseshoe drag exerted on a low-mass planet by an isothermal gaseous disk. In the globally isothermal case, we use a formal- ism, based on the use of a Bernoulli invariant, that takes into account pressure effects, and that extends the torque estimate to a region wider than the horse- shoe region. We find a result that is strictly identical to the standard horseshoe drag. This shows that the horseshoe drag accounts for the torque of the whole corotation region, and not only of the horseshoe region, thereby deserving to be called corotation torque. We find that evanescent waves launched downstream of the horseshoe U-turns by the perturbations of vortensity exert a feed-back on the upstream region, that render the horseshoe region asymmetric. This asymmetry scales with the vortensity gradient and with the disks aspect ratio. It does not depend on the planetary mass, and it does not have any impact on the horseshoe drag. Since the horseshoe drag has a steep dependence on the width of the horseshoe region, we provide an adequate definition of the width that needs to be used in horseshoe drag estimates. We then consider the case of locally isothermal disks, in which the tempera- ture is constant in time but depends on the distance to the star. The horseshoe drag appears to be different from the case of a globally isothermal disk. The difference, which is due to the driving of vortensity in the vicinity of the planet, is intimately linked to the topology of the flow. We provide a descriptive inter- pretation of these effects, as well as a crude estimate of the dependency of the excess on the temperature gradient.
178 - F. S. Masset , J. Casoli 2009
We evaluate the horseshoe drag exerted on a low-mass planet embedded in a gaseous disk, assuming the disks flow in the coorbital region to be adiabatic. We restrict this analysis to the case of a planet on a circular orbit, and we assume a steady flo w in the corotating frame. We also assume that the corotational flow upstream of the U-turns is unperturbed, so that we discard saturation effects. In addition to the classical expression for the horseshoe drag in barotropic disks, which features the vortensity gradient across corotation, we find an additional term which scales with the entropy gradient, and whose amplitude depends on the perturbed pressure at the stagnation point of the horseshoe separatrices. This additional torque is exerted by evanescent waves launched at the horseshoe separatrices, as a consequence of an asymmetry of the horseshoe region. It has a steep dependence on the potentials softening length, suggesting that the effect can be extremely strong in the three dimensional case. We describe the main properties of the coorbital region (the production of vortensity during the U-turns, the appearance of vorticity sheets at the downstream separatrices, and the pressure response), and we give torque expressions suitable to this regime of migration. Side results include a weak, negative feed back on migration, due to the dependence of the location of the stagnation point on the migration rate, and a mild enhancement of the vortensity related torque at large entropy gradient.
The regular satellites found around Neptune ($approx 17~M_{Earth}$) and Uranus ($approx 14.5~M_{Earth}$) suggest that past gaseous circumplanetary disks may have co-existed with solids around sub-Neptune-mass protoplanets ($< 17~M_{Earth}$). These di sks have been shown to be cool, optically thin, quiescent, with low surface density and low viscosity. Numerical studies of the formation are difficult and technically challenging. As an introductory attempt, three-dimensional global simulations are performed to explore the formation of circumplanetary disks around sub-Neptune-mass protoplanets embedded within an isothermal protoplanetary disk at the inviscid limit of the fluid in the absence of self-gravity. Under such conditions, a sub-Neptune-mass protoplanet can reasonably have a rotationally supported circumplanetary disk. The size of the circumplanetary disk is found to be roughly one-tenth of the corresponding Hill radius, which is consistent with the orbital radii of irregular satellites found for Uranus. The protoplanetary gas accretes onto the circumplanetary disk vertically from high altitude and returns to the protoplanetary disk again near the midplane. This implies an open system in which the circumplanetary disk constantly exchanges angular momentum and material with its surrounding prenatal protoplanetary gas.
We study gap formation in gaseous protoplanetary discs by a Jupiter mass planet. The planets orbit is circular and inclined relative to the midplane of the disc. We use the impulse approximation to estimate the gravitational tidal torque between the planet and the disc, and infer the gap profile. For low-mass discs, we provide a criterion for gap opening when the orbital inclination is $leq 30^{circ}$. Using the FARGO3D code, we simulate the disc response to an inclined massive planet. The dependence of the depth and width of the gap obtained in the simulations on the inclination of the planet is broadly consistent with the scaling laws derived in the impulse approximation. Although we mainly focus on planets kept on fixed orbits, the formalism permits to infer the temporal evolution of the gap profile in cases where the inclination of the planet changes with time. This study may be useful to understand the migration of massive planets on inclined orbit, because the strength of the interaction with the disc depends on whether a gap is opened or not.
110 - Mir Abbas Jalali 2013
We use the Fokker-Planck equation and model the dispersive dynamics of solid particles in annular protoplanetary disks whose gas component is more massive than the particle phase. We model particle--gas interactions as hard sphere collisions, determi ne the functional form of diffusion coefficients, and show the existence of two global unstable modes in the particle phase. These modes have spiral patterns with the azimuthal wavenumber $m=1$ and rotate slowly. We show that in ring-shaped disks, the phase space density of solid particles increases linearly in time towards an accumulation point near the location of pressure maximum, while instabilities grow exponentially. Therefore, planetesimals and planetary cores can be efficiently produced near the peaks of unstable density waves. In this mechanism, particles migrating towards the accumulation point will not participate in the formation of planets, and should eventually form a debris ring like the main asteroid belt or classical Kuiper belt objects. We present the implications of global instabilities to the formation of ice giants and terrestrial planets in the solar system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا