ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic Wind in NGC 4460: New Observations

61   0   0.0 ( 0 )
 نشر من قبل Dmitriy Oparin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC4460 is an isolated lenticular galaxy, in which galactic wind has been earlier discovered as a gas outflow associated with circumnuclear regions of star formation. Using the results of observations in the Halpha line with the scanning Fabry-Perot interferometer on the SAO RAS 6-m telescope, we studied the kinematics of the ionized gas in this galaxy. The parameters of gas outflow from the plane of the galactic disk were refined within a simple geometric model. We show that it is impossible to characterize the wind by a fixed velocity value. Characteristic outflow velocities are within 30..80 km/s , and they are insufficient to make the swept-out matter ultimately leave the galaxy.

قيم البحث

اقرأ أيضاً

Galactic winds are associated with intense star formation and AGNs. Depending on their formation mechanism and velocity they may remove a significant fraction of gas from their host galaxies, thus suppressing star formation, enriching the intergalact ic medium, and shaping the circumgalactic gas. However, the long-term evolution of these winds remains mostly unknown. We report the detection of a wind from NGC 3079 to at least 60 kpc from the galaxy. We detect the wind in FUV line emission to 60 kpc (as inferred from the broad FUV filter in GALEX) and in X-rays to at least 30~kpc. The morphology, luminosities, temperatures, and densities indicate that the emission comes from shocked material, and the O/Fe ratio implies that the X-ray emitting gas is enriched by Type II supernovae. If so, the speed inferred from simple shock models is about 500 km/s, which is sufficient to escape the galaxy. However, the inferred kinetic energy in the wind from visible components is substantially smaller than canonical hot superwind models.
We have observed the central region of the nearby starburst galaxy NGC 253 with the Kyoto Tridimensional Spectrograph II (Kyoto3DII) Fabry-Perot mode in order to investigate the properties of its galactic wind. Since this galaxy has a large inclinati on, it is easy to observe its galactic wind. We produced the Ha, [N II]6583, and [S II]6716,6731 images, as well as those line ratio maps. The [N II]/Ha ratio in the galactic wind region is larger than those in H II regions in the galactic disk. The [N II]/Ha ratio in the southeastern filament, a part of the galactic wind, is the largest and reaches about 1.5. These large [N II]/Ha ratios are explained by shock ionization/excitation. Using the [S II]/Ha ratio map, we spatially separate the galactic wind region from the starburst region. The kinetic energy of the galactic wind can be sufficiently supplied by supernovae in a starburst region in the galactic center. The shape of the galactic wind and the line ratio maps are non-axisymmetric about the galactic minor axis, which is also seen in M82. In the [N II]6583/[S II]6716,6731 map, the positions with large ratios coincide with the positions of star clusters found in the Hubble Space Telescope (HST) observation. This means that intense star formation causes strong nitrogen enrichment in these regions. Our unique data of the line ratio maps including [S II] lines have demonstrated their effectiveness for clearly distinguishing between shocked gas regions and starburst regions, determining the extent of galactic wind and its mass and kinetic energy, and discovering regions with enhanced nitrogen abundance.
We present new observations of the recently discovered gas cloud G2 currently falling towards the massive black hole in the Galactic Center. The new data confirm that G2 is on a highly elliptical orbit with a predicted pericenter passage mid 2013. Th e updated orbit has an even larger eccentricity of 0.966, an epoch of pericenter two months later than estimated before, and a nominal minimum distance of 2200 Schwarzschild radii only. The velocity gradient of G2 has developed further to 600 km/s FWHM in summer 2012. We also detect the tail of similar total flux and on the same orbit as G2 along the trajectory at high significance. No hydrodynamic effects are detected yet, since the simple model of a tidally shearing gas cloud still describes the data very well. The flux of G2 has not changed by more than 10% between 2008 and 2012, disfavoring models where additional gas from a reservoir is released to the disrupting diffuse gas component.
118 - A. Lapi (1 , 2 , 3 2020
We generalize the analytic solutions presented in Pantoni et al. (2019) by including a simple yet effective description of wind recycling and galactic fountains, with the aim of self-consistently investigating the spatially-averaged time evolution of the gas, stellar, metal, and dust content in disc-dominated late-type galaxies (LTGs). Our analytic solutions, when supplemented with specific prescriptions for parameter setting and with halo accretion rates from $N-$body simulations, can be exploited to reproduce the main statistical relationships followed by local LTGs; these involve, as a function of the stellar mass, the star formation efficiency, the gas mass fraction, the gas/stellar metallicity, the dust mass, the star formation rate, the specific angular momentum, and the overall mass/metal budget. Our analytic solutions allow to easily disentangle the diverse role of the main physical processes ruling galaxy formation in LTGs; in particular, we highlight the crucial relevance of wind recycling and galactic fountains in efficiently refurnishing the gas mass, extending the star-formation timescale, and boosting the metal enrichment in gas and stars. All in all, our analytic solutions constitute a transparent, handy, and fast tool that can provide a basis for improving the (subgrid) physical recipes presently implemented in more sophisticated semi-analytic models and numerical simulations, and can offer a benchmark for interpreting and forecasting current and future spatially-averaged observations of local and higher redshift LTGs.
We present J and K imaging linear polarimetric adaptive optics observations of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5 (30 pc) aperture at K, we fi nd that polarisation arising from the passage of radiation from the inner edge of the torus through magnetically aligned dust grains in the clumps is the dominant polarisation mechanism, with an intrinsic polarisation of 7.0%$pm$2.2%. This result yields a torus magnetic field strength in the range of 4$-$82 mG through paramagnetic alignment, and 139$^{+11}_{-20}$ mG through the Chandrasekhar-Fermi method. The measured position angle (P.A.) of polarisation at K$$ is found to be similar to the P.A. of the obscuring dusty component at few parsec scales using infrared interferometric techniques. We show that the constant component of the magnetic field is responsible for the alignment of the dust grains, and aligned with the torus axis onto the plane of the sky. Adopting this magnetic field configuration and the physical conditions of the clumps in the MHD outflow wind model, we estimate a mass outflow rate $le$0.17 M$_{odot}$ yr$^{-1}$ at 0.4 pc from the central engine for those clumps showing near-infrared dichroism. The models used were able to create the torus in a timescale of $geq$10$^{5}$ yr with a rotational velocity of $leq$1228 km s$^{-1}$ at 0.4 pc. We conclude that the evolution, morphology and kinematics of the torus in NGC 1068 can be explained within a MHD framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا