ﻻ يوجد ملخص باللغة العربية
We combine Spitzer and Herschel data of the star-forming region N11 in the Large Magellanic Cloud to produce detailed maps of the dust properties in the complex and study their variations with the ISM conditions. We also compare APEX/LABOCA 870um observations with our model predictions in order to decompose the 870um emission into dust and non-dust (free-free emission and CO(3-2) line) contributions. We find that in N11, the 870um can be fully accounted for by these 3 components. The dust surface density map of N11 is combined with HI and CO observations to study local variations in the gas-to-dust mass ratios. Our analysis leads to values lower than those expected from the LMC low-metallicity as well as to a decrease of the gas-to-dust mass ratio with the dust surface density. We explore potential hypotheses that could explain the low observed gas-to-dust mass ratios (variations in the XCO factor, presence of CO-dark gas or of optically thick HI or variations in the dust abundance in the dense regions). We finally decompose the local SEDs using a Principal Component Analysis (i.e. with no a priori assumption on the dust composition in the complex). Our results lead to a promising decomposition of the local SEDs in various dust components (hot, warm, cold) coherent with that expected for the region. Further analysis on a larger sample of galaxies will follow in order to understand how unique this decomposition is or how it evolves from one environment to another.
We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at $zsim1.5$ in the Subaru Deep Field. These galaxies are selected as [OII]$lambda$3727 emitters at $zapprox$ 1.47 and 1.62 from narrow-band imaging. We
(abridged) The ambiguous origin of [CII] 158um in the interstellar medium complicates its use for diagnostics concerning the star-formation rate and physical conditions in photodissociation regions (PDRs). We observed the giant HII region N11 in the
We conducted observations of 12CO(J=5-4) and dust thermal continuum emission toward twenty star-forming galaxies on the main sequence at z~1.4 using ALMA to investigate the properties of the interstellar medium. The sample galaxies are chosen to trac
Over the past decade increasingly robust estimates of the dense molecular gas content in galaxy populations between redshift 0 and the peak of cosmic galaxy/star formation from redshift 1-3 have become available. This rapid progress has been possible
We present VLT/SINFONI near-infrared (NIR) integral field spectroscopy of six $z sim 0.2$ Lyman break galaxy analogs (LBAs), from which we detect HI, HeI, and [FeII] recombination lines, and multiple H$_2$ ro-vibrational lines in emission. Pa$alpha$