ﻻ يوجد ملخص باللغة العربية
We present the first calculation of the electromagnetic form factor of the $pi$ meson at physical light quark masses. We use configurations generated by the MILC collaboration including the effect of $u$, $d$, $s$ and $c$ sea quarks with the Highly Improved Staggered Quark formalism. We work at three values of the lattice spacing on large volumes and with $u$/$d$ quark masses going down to the physical value. We study scalar and vector form factors for a range in space-like $q^2$ from 0.0 to -0.1 $mathrm{GeV}^2$ and from their shape we extract mean square radii. Our vector form factor agrees well with experiment and we find $langle r^2 rangle_V = 0.403(18)(6) ,mathrm{fm}^2$. For the scalar form factor we include quark-line disconnected contributions which have a significant impact on the radius. We give the first results for SU(3) flavour-singlet and octet scalar mean square radii, obtaining: $langle r^2 rangle_S^{mathrm{singlet}} = 0.506(38)(53) mathrm{fm}^2$ and $langle r^2 rangle_S^{mathrm{octet}} = 0.431(38)(46) mathrm{fm}^2$. We discuss the comparison with expectations from chiral perturbation theory.
We present the first lattice QCD calculation of the $B_s$ and $B_d$ mixing parameters with physical light quark masses. We use MILC gluon field configurations that include $u$, $d$, $s$ and $c$ sea quarks at 3 values of the lattice spacing and with 3
We determine the decay constants of the pi and K mesons on gluon field configurations from the MILC collaboration including u, d, s and c quarks. We use three values of the lattice spacing and u/d quark masses going down to the physical value. We use
The exclusive semileptonic decay $B rightarrow pi ell u$ is a key process for the determination of the Cabibbo-Kobayashi-Maskawa matrix element $V_{ub}$ from the comparison of experimental rates as a function of $q^2$ with theoretically determined f
The quark flavor sector of the Standard Model is a fertile ground to look for new physics effects through a unitarity test of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. We present a lattice QCD calculation of the scalar and the vector form factors (
We report on our calculation of the B to D^(*) ell u form factors in 2+1 flavor lattice QCD. The Mobius domain-wall action is employed for light, strange, charm and bottom quarks. At lattice cutoffs 1/a sim 2.4, 3.6 and 4.5 GeV, we simulate bottom q