ترغب بنشر مسار تعليمي؟ اضغط هنا

A Dark Spot on a Massive White Dwarf

127   0   0.0 ( 0 )
 نشر من قبل Mukremin Kilic
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 min due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B<70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope.

قيم البحث

اقرأ أيضاً

79 - C. J. Horowitz 2020
Recently, Cheng et al. identified a number of massive white dwarfs (WD) that appear to have an additional heat source providing a luminosity near $approx 10^{-3}L_odot$ for multiple Gyr. In this paper we explore heating from electron capture and pycn onuclear reactions. We also explore heating from dark matter annihilation. WD stars appear to be too small to capture enough dark matter for this to be important. Finally, if dark matter condenses to very high densities inside a WD this could ignite nuclear reactions. We calculate the enhanced central density of a WD in the gravitational potential of a very dense dark matter core. While this might start a supernova, it seems unlikely to provide modest heating for a long time. We conclude that electron capture, pycnonuclear, and dark matter reactions are unlikely to provide significant heating in the massive WD that Cheng considers.
Normal type Ia supernovae (SNe) are thought to arise from the thermonuclear explosion of massive ($>0.8$ M$_odot$) carbon-oxygen white dwarfs (WDs), although the exact mechanism is debated. In some models helium accretion onto a carbon-oxygen (CO) WD from a companion was suggested to dynamically trigger a detonation of the accreted helium shell. The helium detonation then produces a shock that after converging on itself close to the core of the CO-WD, triggers a secondary carbon detonation and gives rise to an energetic explosion. However, most studies of such scenarios have been done in one or two dimensions, and/or did not consider self-consistent models for the accretion and the He-donor. Here we make use of detailed 3D simulation to study the interaction of a He-rich hybrid $0.69,mathrm{M_odot}$ HeCO WD with a more massive $0.8,mathrm{M_odot}$ CO~WD. We find that accretion from the hybrid WD onto the CO~WD gives rise to a helium detonation. However, the helium detonation does not trigger a carbon detonation in the CO~WD. Instead, the helium detonation burns through the accretion stream to also burn the helium shell of the donor hybrid HeCO-WD. The detonation of its massive helium shell then compresses its CO core, and triggers its detonation and full destruction. The explosion gives rise to a faint, likely highly reddened transient, potentially observable by the Vera Rubin survey, and the high-velocity ($sim 1000,mathrm{km s^{-1}}$) ejection of the heated surviving CO~WD companion. Pending on uncertainties in stellar evolution we estimate the rate of such transient to be up to $sim10%$ of the rate of type Ia SNe.
We report the identification, from a photometric, astrometric and spectroscopic study, of a massive white dwarf member of the nearby, approximately solar metalicity, Coma Berenices open star cluster (Melotte 111). We find the optical to near-IR energ y distribution of WD1216+260 to be entirely consistent with that of an isolated DA and determine the effective temperature and surface gravity of this object to be $T_{rm eff}$=$15739^{+197}_{-196}$K and log $g$=$8.46^{+0.03}_{-0.02}$. We set tight limits on the mass of a putative cool companion, M$simgreat$0.036M$_{odot}$ (spatially unresolved) and M$simgreat$0.034M$_{odot}$, (spatially resolved and a$simless$2500AU). Based on the predictions of CO core, thick-H layer evolutionary models we determine the mass and cooling time of WD1216+260 to be M$_{rm WD}$=$0.90 pm0.04$M$_{odot}$ and $tau$$_{rm cool}$=$363^{+46}_{-41}$Myrs respectively. For an adopted cluster age of $tau$=500$pm$100Myrs we infer the mass of its progenitor star to be M$_{rm init}$=$4.77^{+5.37}_{-0.97}$M$_{odot}$. We briefly discuss this result in the context of the form of the stellar initial mass-final mass relation.
We have searched the Gaia DR2 catalogue for previously unknown hot white dwarfs in the direction of young open star clusters. The aim of this experiment was to try and extend the initial-final mass relation (IFMR) to somewhat higher masses, potential ly providing a tension with the Chandrasekhar limit currently thought to be around 1.38 M$_{odot}$. We discovered a particularly interesting white dwarf in the direction of the young $sim$150 Myr old cluster Messier 47 (NGC 2422). All Gaia indicators (proper motion, parallax, location in the Gaia colour-magnitude diagram) suggest that it is a cluster member. Its spectrum, obtained from Gemini South, yields a number of anomalies: it is a DB (helium-rich atmosphere) white dwarf, it has a large magnetic field (2.5 MG), is of high mass ($sim$1.06 M$_odot$) and its colours are very peculiar --- particularly the redder ones ($r$, $i$, $z$ and $y$), which suggest that it has a late-type companion. This is the only magnetized, detached binary white dwarf with a non-degenerate companion of any spectral type known in or out of a star cluster. If the white dwarf is a cluster member, as all indicators suggest, its progenitor had a mass just over 6 M$_odot$. It may, however, be telling an even more interesting story than the one related to the IFMR, one about the origin of stellar magnetic fields, Type I supernovae and gravitational waves from low mass stellar systems.
We report on timing observations of the recently discovered binary pulsar PSR J1952+2630 using the Arecibo Observatory. The mildly recycled 20.7-ms pulsar is in a 9.4-hr orbit with a massive, M_WD > 0.93 M_sun, white dwarf (WD) companion. We present, for the first time, a phase-coherent timing solution, with precise spin, astrometric, and Keplerian orbital parameters. This shows that the characteristic age of PSR J1952+2630 is 77 Myr, younger by one order of magnitude than any other recycled pulsar-massive WD system. We derive an upper limit on the true age of the system of 50 Myr. We investigate the formation of PSR J1952+2630 using detailed modelling of the mass-transfer process from a naked helium star on to the neutron star following a common-envelope phase (Case BB Roche-lobe overflow). From our modelling of the progenitor system, we constrain the accretion efficiency of the neutron star, which suggests a value between 100 and 300% of the Eddington accretion limit. We present numerical models of the chemical structure of a possible oxygen-neon-magnesium WD companion. Furthermore, we calculate the past and the future spin evolution of PSR J1952+2630, until the system merges in about 3.4 Gyr due to gravitational wave emission. Although we detect no relativistic effects in our timing analysis we show that several such effects will become measurable with continued observations over the next 10 years; thus PSR J1952+2630 has potential as a testbed for gravitational theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا