ﻻ يوجد ملخص باللغة العربية
The Mu2e experiment will search for a neutrino-less muon-to-electron conversion process with almost four orders of magnitude of sensitivity improvement relative to the current best limit. One important background is caused by cosmic ray muons, and particles produced by their decay or interactions, mimicking the conversion electron signature. In order to reach the design sensitivity, Mu2e needs to obtain a cosmic ray veto (CRV) efficiency of 99.99%. The CRV system consists of four layers of plastic scintillating counters read out by silicon photo-multipliers (SiPM) through wavelength shifting fibers. The CRV counters must produce sufficient photo statistics in order to achieve the required veto efficiency. We study the light properties of several wavelength shifting fiber sizes in order to optimize the total light yield for the CRV system. The measurements are performed using a scanner designed to ensure fiber quality for the CRV.
The motivation for a cosmic muon veto (CMV) detector is to explore the possibility of locating the proposed large Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) at a shallow depth. An initial effort in that direction,
Based on test-beam measurements, we study the response of a liquid-scintillator detector equipped with wavelength-shifting optical modules, that are proposed e.g. for the IceCube experiment and the SHiP experiment, and adiabatic light guides that are
The light yield and the time resolution of different types of 3 m long scintillating bars instrumented with wavelength shifting fibres and read out by different models of silicon photomultipliers have been measured at a test beam at the T9 area at th
Low background experiments need a suppression of cosmogenically induced events. The GERDA experiment located at LNGS is searching for the neutrinless double beta decay of $^{76}$Ge. It is equipped with an active muon veto the main part of which is a
The scintillation detection systems of liquid argon time projection chambers (LArTPCs) require wavelength shifters to detect the 128 nm scintillation light produced in liquid argon. Tetraphenyl butadiene (TPB) is a fluorescent material that can shift