ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental building blocks of controlling complex networks: A universal controllability framework

100   0   0.0 ( 0 )
 نشر من قبل Zhesi Shen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To understand the controllability of complex networks is a forefront problem relevant to different fields of science and engineering. Despite recent advances in network controllability theories, an outstanding issue is to understand the effect of network topology and nodal interactions on the controllability at the most fundamental level. Here we develop a universal framework based on local information only to unearth the most {em fundamental building blocks} that determine the controllability. In particular, we introduce a network dissection process to fully unveil the origin of the role of individual nodes and links in control, giving rise to a criterion for the much needed strong structural controllability. We theoretically uncover various phase-transition phenomena associated with the role of nodes and links and strong structural controllability. Applying our theory to a large number of empirical networks demonstrates that technological networks are more strongly structurally controllable (SSC) than many social and biological networks, and real world networks are generally much more SSC than their random counterparts with intrinsic resilience and adaptability as a result of human design and natural evolution.



قيم البحث

اقرأ أيضاً

Network motifs are small building blocks of complex networks. Statistically significant motifs often perform network-specific functions. However, the precise nature of the connection between motifs and the global structure and function of networks re mains elusive. Here we show that the global structure of some real networks is statistically determined by the probability of connections within motifs of size at most 3, once this probability accounts for node degrees. The connectivity profiles of node triples in these networks capture all their local and global properties. This finding impacts methods relying on motif statistical significance, and enriches our understanding of the elementary forces that shape the structure of complex networks.
Controlling complex networks is of paramount importance in science and engineering. Despite the recent development of structural-controllability theory, we continue to lack a framework to control undirected complex networks, especially given link wei ghts. Here we introduce an exact-controllability paradigm based on the maximum multiplicity to identify the minimum set of driver nodes required to achieve full control of networks with arbitrary structures and link-weight distributions. The framework reproduces the structural controllability of directed networks characterized by structural matrices. We explore the controllability of a large number of real and model networks, finding that dense networks with identical weights are difficult to be controlled. An efficient and accurate tool is offered to assess the controllability of large sparse and dense networks. The exact-controllability framework enables a comprehensive understanding of the impact of network properties on controllability, a fundamental problem towards our ultimate control of complex systems.
Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturi ng the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure.
Observing and controlling complex networks are of paramount interest for understanding complex physical, biological and technological systems. Recent studies have made important advances in identifying sensor or driver nodes, through which we can obs erve or control a complex system. Yet, the observational uncertainty induced by measurement noise and the energy required for control continue to be significant challenges in practical applications. Here we show that the variability of control energy and observational uncertainty for different directions of the state space depend strongly on the number of driver nodes. In particular, we find that if all nodes are directly driven, control is energetically feasible, as the maximum energy increases sublinearly with the system size. If, however, we aim to control a system through a single node, control in some directions is energetically prohibitive, increasing exponentially with the system size. For the cases in between, the maximum energy decays exponentially when the number of driver nodes increases. We validate our findings in several model and real networks, arriving to a series of fundamental laws to describe the control energy that together deepen our understanding of complex systems.
143 - James P. Gleeson 2012
A wide class of binary-state dynamics on networks---including, for example, the voter model, the Bass diffusion model, and threshold models---can be described in terms of transition rates (spin-flip probabilities) that depend on the number of nearest neighbors in each of the two possible states. High-accuracy approximations for the emergent dynamics of such models on uncorrelated, infinite networks are given by recently-developed compartmental models or approximate master equations (AME). Pair approximations (PA) and mean-field theories can be systematically derived from the AME. We show that PA and AME solutions can coincide under certain circumstances, and numerical simulations confirm that PA is highly accurate in these cases. For monotone dynamics (where transitions out of one nodal state are impossible, e.g., SI disease-spread or Bass diffusion), PA and AME give identical results for the fraction of nodes in the infected (active) state for all time, provided the rate of infection depends linearly on the number of infected neighbors. In the more general non-monotone case, we derive a condition---that proves equivalent to a detailed balance condition on the dynamics---for PA and AME solutions to coincide in the limit $t to infty$. This permits bifurcation analysis, yielding explicit expressions for the critical (ferromagnetic/paramagnetic transition) point of such dynamics, closely analogous to the critical temperature of the Ising spin model. Finally, the AME for threshold models of propagation is shown to reduce to just two differential equations, and to give excellent agreement with numerical simulations. As part of this work, Octave/Matlab code for implementing and solving the differential equation systems is made available for download.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا