ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational-wave cosmology across 29 decades in frequency

106   0   0.0 ( 0 )
 نشر من قبل Paul Lasky
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum fluctuations of the gravitational field in the early Universe, amplified by inflation, produce a primordial gravitational-wave background across a broad frequency band. We derive constraints on the spectrum of this gravitational radiation, and hence on theories of the early Universe, by combining experiments that cover 29 orders of magnitude in frequency. These include Planck observations of cosmic microwave background temperature and polarization power spectra and lensing, together with baryon acoustic oscillations and big bang nucleosynthesis measurements, as well as new pulsar timing array and ground-based interferometer limits. While individual experiments constrain the gravitational-wave energy density in specific frequency bands, the combination of experiments allows us to constrain cosmological parameters, including the inflationary spectral index, $n_t$, and the tensor-to-scalar ratio, $r$. Results from individual experiments include the most stringent nanohertz limit of the primordial background to date from the Parkes Pulsar Timing Array, $Omega_{rm gw}(f)<2.3times10^{-10}$. Observations of the cosmic microwave background alone limit the gravitational-wave spectral index at 95% confidence to $n_tlesssim5$ for a tensor-to-scalar ratio of $r = 0.11$. However, the combination of all the above experiments limits $n_t<0.36$. Future Advanced LIGO observations are expected to further constrain $n_t<0.34$ by 2020. When cosmic microwave background experiments detect a non-zero $r$, our results will imply even more stringent constraints on $n_t$ and hence theories of the early Universe.



قيم البحث

اقرأ أيضاً

We demonstrate that gravitational waves generated by efficient gauge preheating after axion inflation generically contribute significantly to the effective number of relativistic degrees of freedom $N_mathrm{eff}$. We show that, with existing Planck limits, gravitational waves from preheating already place the strongest constraints on the inflatons possible axial coupling to Abelian gauge fields. We demonstrate that gauge preheating can completely reheat the Universe regardless of the inflationary potential. Further, we quantify the variation of the efficiency of gravitational wave production from model to model and show that it is correlated with the tensor-to-scalar ratio. In particular, when combined with constraints on models whose tensor-to-scalar ratios would be detected by next-generation cosmic microwave background experiments, $rgtrsim 10^{-3}$, constraints from $N_mathrm{eff}$ will probe or rule out the entire coupling regime for which gauge preheating is efficient.
The Laser Interferometer Space Antenna (LISA) will open the mHz frequency window of the gravitational wave (GW) landscape. Among all the new GW sources expected to emit in this frequency band, extreme mass-ratio inspirals (EMRIs) constitute a unique laboratory for astrophysics and fundamental physics. Here we show that EMRIs can also be used to extract relevant cosmological information, complementary to both electromagnetic (EM) and other GW observations. By using the loudest EMRIs (SNR$>$100) detected by LISA as dark standard sirens, statistically matching their sky localisation region with mock galaxy catalogs, we find that constraints on $H_0$ can reach $sim$1.1% ($sim$3.6%) accuracy, at the 90% credible level, in our best (worst) case scenario. By considering a dynamical dark energy (DE) cosmological model, with $Lambda$CDM parameters fixed by other observations, we further show that in our best (worst) case scenario $sim$5.9% ($sim$12.3%) relative uncertainties at the 90% credible level can be obtained on $w_0$, the DE equation of state parameter. Besides being relevant in their own right, EMRI measurements will be affected by different systematics compared to both EM and ground-based GW observations. Cross validation with complementary cosmological measurements will therefore be of paramount importance, especially if convincing evidence of physics beyond $Lambda$CDM emerges from future observations.
122 - Danny Laghi 2021
We show that the loudest extreme mass-ratio inspirals (EMRIs) detected by the future space-based gravitational wave detector LISA can be used as dark standard sirens, statistically matching their sky localisation region with mock galaxy catalogs. In these Proceedings we focus on a realistic EMRI population scenario and report accuracy predictions for the measure of cosmological parameters, anticipating the potential of EMRIs to simultaneously constrain the Hubble constant, the dark matter, and the dark energy density parameters.
In this paper, we systematically study gravitational waves (GWs) produced by remote compact astrophysical sources. To describe such GWs properly, we introduce three scales, $lambda, ; L_c$ and $L$, denoting, respectively, the typical wavelength of GW s, the scale of the cosmological perturbations, and the size of the observable universe. For GWs to be detected by the current and foreseeable detectors, the condition $lambda ll L_c ll L$ holds, and such GWs can be well approximated as high-frequency GWs. In order for the backreaction of the GWs to the background to be negligible, we must assume that $left|h_{mu u}right| ll 1$, in addition to the condition $epsilon ll 1$, which are also the conditions for the linearized Einstein field equations for $h_{mu u}$ to be valid, where $g_{mu u} = gamma_{mu u} + epsilon h_{mu u}$, and $gamma_{mu u}$ denotes the background. To simplify the field equations, we show that the spatial, traceless, and Lorentz gauge conditions can be imposed simultaneously, even when the background is not vacuum, as long as the high-frequency GW approximation is valid. However, to develop the formulas that can be applicable to as many cases as possible, we first write down explicitly the linearized Einstein field equations by imposing only the spatial gauge. Applying the general formulas together with the geometrical optics approximation to such GWs, we find that they still move along null geodesics and its polarization bi-vector is parallel-transported, even when both the cosmological scalar and tensor perturbations are present. In addition, we also calculate the gravitational integrated Sachs-Wolfe effects, whereby the dependences of the amplitude, phase and luminosity distance of the GWs on these two kinds of perturbations are read out explicitly.
We present a detailed study of the methodology for correlating `dark sirens (compact binaries coalescences without electromagnetic counterpart) with galaxy catalogs. We propose several improvements on the current state of the art, and we apply them t o the GWTC-2 catalog of LIGO/Virgo gravitational wave (GW) detections, and the GLADE galaxy catalog, performing a detailed study of several sources of systematic errors that, with the expected increase in statistics, will eventually become the dominant limitation. We provide a measurement of $H_0$ from dark sirens alone, finding as the best result $H_0=67.3^{+27.6}_{-17.9},,{rm km}, {rm s}^{-1}, {rm Mpc}^{-1}$ ($68%$ c.l.) which is, currently, the most stringent constraint obtained using only dark sirens. Combining dark sirens with the counterpart for GW170817 we find $H_0= 72.2^{+13.9}_{-7.5} ,{rm km}, {rm s}^{-1}, {rm Mpc}^{-1}$. We also study modified GW propagation, which is a smoking gun of dark energy and modifications of gravity at cosmological scales, and we show that current observations of dark sirens already start to provide interesting limits. From dark sirens alone, our best result for the parameter $Xi_0$ that measures deviations from GR (with $Xi_0=1$ in GR) is $Xi_0=2.1^{+3.2}_{-1.2}$. We finally discuss limits on modified GW propagation under the tentative identification of the flare ZTF19abanrhr as the electromagnetic counterpart of the binary black hole coalescence GW190521, in which case our most stringent result is $Xi_0=1.8^{+0.9}_{-0.6}$. We release the publicly available code $tt{DarkSirensStat}$, which is available under open source license at url{https://github.com/CosmoStatGW/DarkSirensStat}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا