ترغب بنشر مسار تعليمي؟ اضغط هنا

Radioactive decay products in neutron star merger ejecta: heating efficiency and $gamma$-ray emission

114   0   0.0 ( 0 )
 نشر من قبل Kenta Hotokezaka
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The radioactive decay of the freshly synthesized $r$-process nuclei ejected in compact binary mergers power optical/infrared macronovae (kilonovae) that follow these events. The light curves depend critically on the energy partition among the different products of the radioactive decay and this plays an important role in estimates of the amount of ejected $r$-process elements from a given observed signal. We study the energy partition and $gamma$-ray emission of the radioactive decay. We show that $20$-$50%$ of the total radioactive energy is released in $gamma$-rays on timescales from hours to a month. The number of emitted $gamma$-rays per unit energy interval has roughly a flat spectrum between a few dozen keV and $1$ MeV so that most of this energy is carried by $sim 1$ MeV $gamma$-rays. However at the peak of macronova emission the optical depth of the $gamma$-rays is $sim 0.02$ and most of the $gamma$-rays escape. The loss of these $gamma$-rays reduces the heat deposition into the ejecta and hence reduces the expected macronova signals if those are lanthanides dominated. This implies that the ejected mass is larger by a factor of $2$-$3$ than what was previously estimated. Spontaneous fission heats up the ejecta and the heating rate can increase if a sufficient amount of transuranic nuclei are synthesized. Direct measurements of these escaping $gamma$-rays may provide the ultimate proof for the macronova mechanisms and an identification of the $r$-process nucleosynthesis sites. However, the chances to detect these signals are slim with current X-ray and $gamma$-ray missions. New detectors, more sensitive by at least a factor of ten, are needed for a realistic detection rate.



قيم البحث

اقرأ أيضاً

The nebular phase of lanthanide-rich ejecta of a neutron star merger (NSM) is studied by using a one-zone model, in which the atomic properties are represented by a single species, neodymium (Nd). Under the assumption that beta-decay of r-process nuc lei is the heat and ionization source, we solve the ionization and thermal balance of the ejecta under non-local thermodynamic equilibrium. The atomic data including energy levels, radiative transition rates, collision strengths, and recombination rate coefficients, are obtained by using atomic structure codes, GRASP2K and HULLAC. We find that both permitted and forbidden lines roughly equally contribute to the cooling rate of Nd II and Nd III at the nebular temperatures. We show that the kinetic temperature and ionization degree increase with time in the early stage of the nebular phase while these quantities become approximately independent of time after the thermalization break of the heating rate because the processes relevant to the ionization and thermalization balance are attributed to two-body collision between electrons and ions at later times. As a result, in spite of the rapid decline of the luminosity, the shape of the emergent spectrum does not change significantly with time after the break. We show that the emission-line nebular spectrum of the pure Nd ejecta consists of a broad structure from $0.5,mu m$ to $20,mu m$ with two distinct peaks around $1,mu m$ and $10,mu m$.
166 - Oliver Just 2015
We present the first special relativistic, axisymmetric hydrodynamic simulations of black hole-torus systems (approximating general relativistic gravity) as remnants of binary-neutron star (NS-NS) and neutron star-black hole (NS-BH) mergers, in which the viscously driven evolution of the accretion torus is followed with self-consistent energy-dependent neutrino transport and the interaction with the cloud of dynamical ejecta expelled during the NS-NS merging is taken into account. The modeled torus masses, BH masses and spins, and the ejecta masses, velocities, and spatial distributions are adopted from relativistic merger simulations. We find that energy deposition by neutrino annihilation can accelerate outflows with initially high Lorentz factors along polar low-density funnels, but only in mergers with extremely low baryon pollution in the polar regions. NS-BH mergers, where polar mass ejection during the merging phase is absent, provide sufficiently baryon-poor environments to enable neutrino-powered, ultrarelativistic jets with terminal Lorentz factors above 100 and considerable dynamical collimation, favoring short gamma-ray bursts (sGRBs), although their typical energies and durations might be too small to explain the majority of events. In the case of NS-NS mergers, however, neutrino emission of the accreting and viscously spreading torus is too short and too weak to yield enough energy for the outflows to break out from the surrounding ejecta shell as highly relativistic jets. We conclude that neutrino annihilation alone cannot power sGRBs from NS-NS mergers.
We present a simple analytic model, that captures the key features of the emission of radiation from material ejected by the merger of neutron stars (NS), and construct the multi-band and bolometric luminosity light curves of the transient associated with GW170817, AT,2017gfo, using all available data. The UV to IR emission is shown to be consistent with a single $approx0.05$,M$_odot$ component ejecta, with a power-law velocity distribution between $approx 0.1,c$ and $>0.3,c$, a low opacity, {$kappa<1$,cm$^2$,g$^{-1}$}, and a radioactive energy release rate consistent with an initial $Y_{rm e}<0.4$. The late time spectra require an opacity of $kappa_ uapprox0.1$,cm$^2$,g$^{-1}$ at 1 to $2mu$m. If this opacity is provided entirely by Lanthanides, their implied mass fraction is $X_{rm Ln}approx10^{-3}$, approximately 30 times below the value required to account for the solar abundance. The inferred value of $X_{rm Ln}$ is uncertain due to uncertainties in the estimates of IR opacities of heavy elements, which also do not allow the exclusion of a significant contribution to the opacity by other elements (the existence of a slower ejecta rich in Lanthanides, that does not contribute significantly to the luminosity, can also not be ruled out). The existence of a relatively massive, $approx 0.05$,M$_odot$, ejecta with high velocity and low opacity is in tension with the results of numerical simulations of NS mergers.
The rapid-neutron-capture (r) process is responsible for synthesizing many of the heavy elements observed in both the solar system and Galactic metal-poor halo stars. Simulations of r-process nucleosynthesis can reproduce abundances derived from obse rvations with varying success, but so far fail to account for the observed over-enhancement of actinides, present in about 30% of r-process-enhanced stars. In this work, we investigate actinide production in the dynamical ejecta of a neutron star merger and explore if varying levels of neutron richness can reproduce the actinide boost. We also investigate the sensitivity of actinide production on nuclear physics properties: fission distribution, beta-decay, and mass model. For most cases, the actinides are over-produced in our models if the initial conditions are sufficiently neutron-rich for fission cycling. We find that actinide production can be so robust in the dynamical ejecta that an additional lanthanide-rich, actinide-poor component is necessary in order to match observations of actinide-boost stars. We present a simple actinide-dilution model that folds in estimated contributions from two nucleosynthetic sites within a merger event. Our study suggests that while the dynamical ejecta of a neutron star merger is a likely production site for the formation of actinides, a significant contribution from another site or sites (e.g., the neutron star merger accretion disk wind) is required to explain abundances of r-process-enhanced, metal-poor stars.
We search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3h after GW170817. The H.E.S.S. target se lection identified regions of high probability to find a counterpart of the gravitational wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges between $270,mathrm{GeV}$ to $8.55,mathrm{TeV}$. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا