ﻻ يوجد ملخص باللغة العربية
A significant fraction of main sequence stars observed interferometrically in the near infrared have slightly extended components that have been attributed to very hot dust. To match the spectrum appears to require the presence of large numbers of very small (< 200 nm in radius) dust grains. However, particularly for the hotter stars, it has been unclear how such grains can be retained close to the star against radiation pressure force. We find that the expected weak stellar magnetic fields are sufficient to trap nm-sized dust grains in epicyclic orbits for a few weeks or longer, sufficient to account for the hot excess emission. Our models provide a natural explanation for the requirement that the hot excess dust grains be smaller than 200 nm. They also suggest that magnetic trapping is more effective for rapidly rotating stars, consistent with the average vsini measurements of stars with hot excesses being larger (at about 2 sigma) than those for stars without such excesses.
Dusty debris disks around pre- and main-sequence stars are potential signposts for the existence of planetesimals and exoplanets. Giant planet formation is therefore expected to play a key role in the evolution of the disk. This is indirectly confirm
We determine the fraction of F, G, and K dwarfs in the Solar Neighborhood hosting hot jupiters as measured by the California Planet Survey from the Lick and Keck planet searches. We find the rate to be 1.2pm0.38%, which is consistent with the rate re
Internal gravity waves are excited at the interface of convection and radiation zones of a solar-type star by the tidal forcing of a short-period planet. The fate of these waves as they approach the centre of the star depends on their amplitude. We d
Lambda Boo stars are predominately A-type stars with solar abundant C, N, O, and S, but up to 2 dex underabundances of refractory elements. The stars unusual surface abundances could be due to a selective accretion of volatile gas over dust. It has b
We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-magnitude early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radi