ﻻ يوجد ملخص باللغة العربية
Using the Feynman-Dyson diagram technique, we study nonlinear polariton-polariton scattering in a two-dimensional micropillar-based optical superlattice with hexagonal symmetry. We demonstrate that both the emerging polariton chirality and the loop Feynman diagrams up to infinite order should be strictly accounted for in the evaluation of the self-energy of the system. Further, we explicitly show that in such a design the time of polariton scattering towards the Dirac points can be drastically decreased which can be used, for instance, in engineering novel classes of polariton lasers with substantially reduced thresholds.
Dirac particles, massless relativistic entities, obey linear energy dispersions and hold important implication in particle physics. Recent discovery of Dirac fermions in condensed matter systems including graphene and topological insulators raises gr
Topological insulators (TIs) are a striking example of materials in which topological invariants are manifested in robustness against perturbations. Their most prominent feature is the emergence of topological edge states with reduced dimension at th
Integrated circuits of photonic components are the goal of applied polaritonics. Here, we propose a compact clock generator based on an exciton-polariton micropillar, providing optical signal with modulation frequency up to 100 GHz. This generator ca
We observe for the first time two-photon excited condensation of exciton-polaritons. The angle-resolved photoluminescence (PL) from the Lower Polariton (LP) ground state in our planar GaAs-based microcavity structure exhibits a clear intensity thresh
We study a system of microcavity pillars arranged into a kagome lattice. We show that polarization-dependent tunnel coupling of microcavity pillars leads to the emergence of the effective spin-orbit interaction consisting of the Dresselhaus and Rashb